Identification of Transition Curves in Vehicular Roads and Railways
Abstract
curves as clothoid, quartic parabola, the Bloss curve, cosinusoid and sinusoid, have been worked out and by the use these equations it was possible to determine some appropriate Cartesian coordinates. In addition some approximate solutions obtained in consequence of making certain simplifying assumptions orientated mainly towards railway routes, have been provided. Notice has been taken of limitations occurring in the application of smooth transition curves in railway systems, which can be caused by very small values of the horizontal ordinates in the initial region. This problem has provided an inspiration for finding a new family of the so-called parametric transition curves, being more advantageous not only over the clothoid but also over cubic parabola as far as dynamics is concerned.
Keywords
Full Text:
PDFReferences
Arslan A., Tari E., Ziatdinov R., Nabiyev R., Transition curve modeling with kinematical properties: research on log‒aesthetic curves, "Computer-Aided Design and Applications", 10-11 (2014)/5, pp. 509-517.
Bałuch H., Optymalizacja układów geometrycznych toru, Wydawnictwa Komunikacji i Łączności, Warszawa 1983.
Baykal O., Tari E., Coskun Z., Sahin M., New transition curve joining two straight lines, "Journal of Transportation Engineering", 123 (1997)/5, pp. 337–347.
Bolton K., Biarc curves, "Computer-Aided Design", 7 (1975)/2, pp. 89–92.
Bosurgi G., D’Andrea A., A polynomial parametric curve (PPC‒CURVE) for the design of horizontal geometry of highways, "Computer-Aided Civil and Infrastructure Engineering", 27 (2012)/4, pp. 303-312.
Cai H., Wang G., A new method in highway route design: joining circular arcs by a single C-B´ezier curve with shape parameter, "Journal of Zhejiang University. Science A", 10 (2009), pp. 562–569.
Dimulyo S., Habib Z., Sakai M., Fair cubic transition between two circles with one circle inside or tangent to the other, "Numerical Algorithms", 51 (2009), pp. 461–476.
Farin G., Class a B´ezier curves, "Computer Aided Geometric Design", 23 (2006)/7, pp. 573–581.
Freimann E., Übergangsbogen mit geschwungner Krummungsline bei Gegenbogen, "Eisenbahningenieur", (1973)/5.
Grabowski R. J., Gładkie przejścia krzywoliniowe w drogach kołowych i kolejowych, "Zeszyty Naukowe AGH", 82 (1984).
Habib Z., Sakai M., G2 cubic transition between two circles with shape control, "International Journal of Computer Mathematics", 80 (2003)/8, pp. 959–967.
Habib Z., Sakai M., G2 Pythagorean hodograph quintic transition between two circles with shape control, "Computer Aided Geometric Design", 24 (2007), pp. 252-266.
Habib Z., Sakai M., On PH quantic spirals joining two circles with one circle inside the other, "Computer-Aided Design", 39 (2007), pp. 125-132.
Harary G., Tal A., The natural 3D spiral, "Computer Graphics Forum", 30 (2011)/2, pp. 237−246.
Klauder L. T., Track transition curve geometry based on gegenbauer polynomials, [in:] The Sixth International Conference RAILWAY ENGINEERING2003 ”Maintenance & Renewal of Permanent Way; Power & Signalling; Structures & Earthworks”, London, 30 April - 1 May 2003, [CD-ROM], ed. by Forde M., Engineering Technics Press, Edinburgh 2004.
Kobryn A., New solutions for general transition curves, "Journal of Surveying Engineering", 140 (2014)/1-2, pp. 12-21.
Koc W., Krzywe przejściowe z nieliniowymi rampami przechyłkowymi w warunkach eksploatacyjnych PKP, "Zeszyty Naukowe Politechniki Gdanskiej, 462, Seria Budownictwo Lądowe", 47 (1990), pp. 3−129.
Koc W., Parametryczna krzywa przejściowa dla dróg kolejowych, "Przegląd Komunikacyjny", (2011)/3-4, pp. 52–56.
Koc W., Design of rail-track geometric systems by satellite measurement, "Journal of Transportation Engineering", 138 (2012)/1, pp. 114-122.
Koc W., Mieloszyk E., Analiza porównawcza wybranych krzywych przejściowych z wykorzystaniem modelu dynamicznego, "Archiwum Inżynierii Lądowej", 33 (1987)/2, pp. 239–261.
Korn G. A., Korn T. M., Mathematical handbook for scientists and engineers, McGraw–Hill Book Company, New York 1968.
Kufver B., Realigning railway in track renewals – linear versus S-shaped superelevation ramps, [in:] The Second International Conference RAILWAY ENGINEERING99 ”Maintenance and Renewal of Permanent Way, Structures and Control”, London, 25-26 May 1999, ed. by Forde M., [CD-ROM] Engineering Technics Press, Edinburgh 1999.
Lamm R., Psarianos B., Mailaender T., Highway design and traffic safety engineering handbook. McGraw-Hill, New York 1999.
Mieloszyk E., Koc W., General dynamic method for determining transition curve equations, "Rail International Schienen der Welt", 10 (1991), pp. 32–40.
Miura K. T., A general equation of aesthetic curves and its self-affinity, "Computer-Aided Design and Applications", 3 (2006)/1-4, pp. 457–464.
Rubchenko V. S., About purposefulness of replacing the linear transition curves by nonlinear ones, "Vestnik CNII", 7 (1958) [in Russian].
Schonherr J., Smooth biarc curves, "Computer-Aided Design", 25 (1993)/6, pp. 365–370.
Schramm G., Verlägern von Übergangsbogen mit kleinsten Seitenverschlebungen, "Eisenbahningenieur", (1977)/7-8.
Sheveleva G. I., Volkov A. E., Medvedev V. I., Algorithms for analysis of meshing and contact of spiral bevel gears, "Mechanism and Machine Theory", 42 (2007)/2, pp. 198–215.
Tari E., Baykal O., An alternative curve in the use of high speed transportation systems, "ARI - An International Journal for Physical and Engineering Sciences", 51 (1998)/2, pp. 126-135.
Tari E., Baykal O.: A new transition curve with enhanced properties. Canadian Journal of Civil Engineering 2011, 2, 32(5), 913-923.
Tasci L., Kuloglu N.: Investigation of a new transition curve. The Baltic Journal of Road and Bridge Engineering 2011, 6(1), 23−29.
Walton D.J., Meek D.S.: Planar G2 transition between two circles with a fair cubic B´ezier curve. Computer-Aided Design 1999, 31 (14), 857–866.
Walton D. J., Meek D. S., Ali J. M.: Planar G2 transition curves composed of cubic B´ezier spiral segments. Journal of Computational and Applied Mathematics 2003, 157 (2), 453–476.
Weigend M.: Transition curves with sinusoidal curvatures on reverse curve. Eisenbahningenieur 1975, No. 3 (in German).
Yahaya S. H., Salleh M. S., Ali J. M.: Spur gear design with an S-shaped transition curve application using Mathematica and CAD tools. IEEE Computer Society 2009, Dubai, United Arab Emirates, 273–276.
Yoshida N., Saito T.: Quasi-aesthetic curves in rational cubic B´ezier forms. Computer-Aided Design and Applications 2007, 4 (9-10), 477–486.
Zboinski K.: Numerical studies on railway vehicle response to transition curves with regard to their different shape. Archives of Civil Engineering 1998, XLIV (2), 151-181.
Zboinski K.: The importance of kinematics accuracy in modelling the dynamics of rail vehicle moving in a curved track with variable velocity. International Journal of Heavy Vehicle Systems 2011, 18 (4), 411-446.
Zboinski K., Dusza M.: Extended study of railway vehicle lateral stability in a curved track. Vehicle System Dynamics 2011, 49(5), 789-810.
Zboinski K., Woznica P.: Optimization of the railway transition curves' shape with use of vehicle-track dynamical model. The Archives of Transport 2010, 22 (3), 387-407.
Ziatdinov R.: Family of superspirals with completely monotonic curvature given in terms of Gauss hypergeometric function. Computer Aided Geometric Design 2012, 10, 29(7), 510-518.
Ziatdinov R., Yoshida N., Kim T.: Analytic parametric equations of log-aesthetic curves in terms of incomplete gamma functions. Computer Aided Geometric Design 2012, 29 (2), 129–140.
Refbacks
- There are currently no refbacks.