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1. INTRODUCTION 

Theoretical analysis of the distribution of 

streams in the transport network plays an important 

role in the theory and practice of transport. The 

natural alternative for these analyzes are empirical 

studies, but they are usually very difficult and 

expensive when hold in the macro-scale. It follows 

the natural need to construct and apply the 

sufficiently accurate models describing spatial 

distribution of flows in various kinds of transport 

modes and networks. 

This paper concerns the dynamic aspects of 

traffic assignment problem, focusing on the nature 

of the network flow adjustment process which is a 

consequence of carriers decisions and actions in 

their search of better routes. The main purpose of 

this study is to formulate the model based on the 

assumption about carriers' bounded rationality and 

examine some special cases. The terminology used 

later is dedicated to freight transport, but the 

results of analysis (including formal derivation of 

dynamic equations) may be directly adopted to the 

case of passenger transport. 

It seems that  most of  past studies have used 

the deterministic models, but some of them have 

based on the probabilistic paradigm. These studies 

were used to examine the stability of different 

types of network equilibria (first of all the 

Deterministic User Equlibrium, and its stochastic 

variant, see for example Florian et all., [7]). The 

results strongly depend on the ,,nature of time'' in 

models. Dynamics analysis for discrete time case 

one can find in the papers of Smith [15], Friesz [8], 

Watling [17,18], Zhang and Nagurney [19], Cho 

and Hwang [5], Mounce [14] and others. Analysis 

of discrete time models can be found for example 

in Cantarella and Casscetta [3] or Bie and Lo [2]. It 

seems that all these models base on the 

fundamental assumption of rational behavior of 

market participants (i.e. users of a network). 

In this paper we partly weaken this assumption 

in favor of the concept of bounded (namely 

procedural) rationality. This machinery allows us 

to propose new equations for estimating the spatial 

distribution of flows. These equations will be used 

to identify the basics of attraction of equilibrium 

states and also may be used for verifying the 

stability of networks equilibria. 

 

2. THE MODEL 

The structure of  transport network, information 

about the structure of population of transport 

companies (hereinafter referred to as carriers) and 

assumptions about their decision-making 

mechanism (especially in terms of choice of 

transport routes) play an important role in the 

spatial distribution modeling of flows in the 

network. We briefly discuss these categories.  
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Carriers 

In many countries, including Poland, road 

freight transport is decentralized. Transport 

services are provided by a relatively large number 

of small carriers 
1
. There are significant differences 

in estimations of the number of carries in Poland. 

Burnewicz [3] estimated it at over 80 thousand (in 

2006). Other authors (Bentkowska-Senator, 

Kordel, [1]), basing on various kinds of sources, 

estimate it at about 110 thousand, including about 

51 thousand national transport companies and 

about 44 thousand of commercial ones. It is worth 

mentioning that according to Polish Statistical 

Office data (GUS, [16]), at the end of the year 

2008 there were about 1200 companies with 11-50 

lorries and a few more than 100 companies with a 

larger fleet. Despite of the various kinds of 

changes (registrations of new companies, re-

registration of the others including cases of 

bankruptcy), it seems that their total number 

remains approximately constant over time. 

Consequently, there are some reasons to treat the 

set of carriers as homogeneous population 

consisting of  small market players (i.e. the activity 

of a single company has a negligible impact on the 

total volume of traffic). It also seems to be an 

acceptable assumption about the independence of 

different carriers, which means that they choose 

their routes (between the given origin and 

destination place) independently to each other. 

Flows in a network 

We consider a transport network (network for 

short) consisting of directed multigraph. Let W 

denote the set of all pair of nodes. For given iW 

let Pj be a set of acyclic paths (routes) connecting 

initial and ending nodes of i. A path flow 

assignment (a spatial distribution of path flows) is 

represented by a vector h=(hn), pP= , 

which components describe the quantities of flows 

on a consecutive paths. Path flows uniquely 

                                                 
1
Polish law (Ustawa o swobodzie działalności gospo-

darczej, Dz.U. Nr 173, poz. 1807 z późn. zm.) states 

that an entrepreneur is a person, legal person or agency 

having legal capacity in pursuing the business. In addi-

tion Motor Transport Act (Ustawa o transporcie samo-

chodowym, Dz.U. z 2004r., Nr 204, poz. 288) states the 

road transport entrepreneur as a person who is allowed 

to carry out business activities in the field of road 

transport. 

 
 

determine arc flows, v . There is a linear 

relationship between these vectors, namely hv 
, where   is the incidence matrix of paths and 

arcs. Every path Pp  is characterized by a cost, 

pc , of travel along p . We will assume that pc  

depends on h  and the function )(hcc pp   is 

known to every carrier.  

 

3. THE DYNAMICS OF FLOWS 

ASSIGNMENT 

The volume of total traffic is a result of 

aggregation of unit flows generated by particular 

carriers. Hence, the spatial distribution of flows 

reflects carriers' decisions on the selection of 

transport routes. In particular, the size tph ,  of flow 

in time t  on the path p  is given by  

,,,,, WipDh ititptp  P     (1) 

where iD  is the total demand for transport 

(demand for short) between pair Wi  of nodes, 

tp,  is the probability of choosing path p  by a 

representative carrier. The immediate consequence 

of (1) are the formulas for flows' increments on the 

path ip P  ( Wi ):  

,,,,,, titptptitp dDdDdh       (2) 

tptitptitp DDh ,,1,,,        (3) 

for the case of continuous and discrete time 

respectively. Therefore derivation of the specific 

form of equation dynamics requires specification 

of changes of two factors: global demand and the 

probabilities of road selections. The first one is 

determined by macroeconomic factors, in 

particular changes in the volume production in 

various sectors of the economy. The method of 

modeling the changes of the second factor - 

probabilities tp,  - may be based on the concept 

of procedure (originally taken from the population 

game theory). In the case of modeling, the 

behaviour of carriers the procedure may be 

regarded as an algorithm for defining ,,the 

sufficiently good'' transport strategy for currently 

observed state of the network. The results of the 

procedure can also be used to verify that 

previously applied strategy remains acceptable. 

The typical procedure may consist of making 

additional observation, taking into account some 

additional data, carrying out additional specific 
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calculations, etc. We will assume that the decision-

making mechanism of every carrier is consistent 

with the Calvo scheme: the carrier makes the 

procedure and may implement its results to re-

optimize and improve his transport strategy, or 

keep the status quo. 

Accordingly to the last assumption, let 

),(  ttp  (for fixed 0 ) be the probability 

that a carrier, who just before the moment t  was 

willing to choose the path ip P , also chooses this 

path at time t . For a fixed pair of nodes Wi  

the probabilities ):( , itp k P
proc   satisfy the 

following equation: 

 

 

(4) 

For discrete time model   can be set to 1. For 

continuous time case, assuming that the 

probabilities depend almost linearly on the length 

of time period ],[ tt  (ie. there exists a constant 

0, tp  such that )(),(  ott pp   if 

0 ), it can be easily seen that (pra1b) follows 

the existence of limit  

)(/)(lim 0,,,0,,
0




 tp

proc

tptptptp  


  

(5) 

 and consequently continuity and 

differentiability of the map tpt , . The rule of 

probability changes may be written as:  

)( ,,,,1, tptptptptp  

proc
   (6) 

 dtd tptptptp ,,,,   proc
     (7) 

in discrete and continuous time model 

respectively.  

Finally, the equation describing the dynamics of 

flows on the path ip P  ( Wi ) has the 

following form (for discrete and continuous time 

case respectively):  

,D)(

)DD))(1((

hh

t,it,pt,pt,p

t,i1t,it,pt,pt,pt,p

t,p1t,p















proc

proc

 

(8) 

  .,,,,,,,, titptptitptptptp dDdtDdh   proc

(9) 

Critical points of this system define a stationary 

procedural equilibrium. Performing the procedure 

by each of the carrier and possible use of its results 

(with probability  ) does not change the 

distribution of flows in the network
2
. It is natural to 

assume that probabilities ):( , P
proc ptp  depend 

on previously observed transport costs. A quite 

general model for those probabilities (for discrete 

and continuous time case) may have the following 

form: 






















,))()(()(

),)()((

0

0

0

0

,

dshchcstwA

hchcwA

stistpi

stistpst
s

i

tp





 proc
 

(10) 

for every ,, Wip i P  where 

}:min{0

iki kcc P  is a minimal cost of 

delivery between the pair Wi , non-negative 

functions   and w  are given. First of them is non-

increasing, the second one - non-decreasing. 

Functions iA  )( Wi  guarantee that (10) defines 

the probability distributions, i.e. 1,  
proc

P tkk i
  

for every pair Wi . 

According to the above remarks, the dynamic 

properties of the model depend on the variability of 

aggregate demand, definition of the procedure and 

the tendency of carriers to accept and take account 

of its results. These remarks may be illustrated by 

the following examples. 

 

 

4. TWO EXAMPLES 

 We solve the dynamics equations for a graph 

consisting of two nodes connected and two arcs 

(equivalently paths 2,1p ), with the following 

                                                 
2
It can be shown (see for example [2], [6]) that under 

some assumptions, the fixed (critical) points of (8,9) 

corresponds to the stochastic user equilibrium states. 

 
 

)).,(1(),( 0,,,     tttt ptpptptp

proc
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unit costs of transportation: 11 )( hhc  , 

22 2)( hhc  . The phase space consisting of all 

admissible distributions of flows is the simplex 

defined by the conditions Dxx  21  and 

0, 21 xx . 

We shall additionally assume that the 

population of carriers is homogeneous and the 

probabilities of making procedures do not vary 

over time,  t . Their common value can be 

regarded as a measure of carriers' tendency to 

makie new procedures ie. to re-optimize their 

behaviour. The procedures have Markov property, 

i.e. their results depend on the actually observed 

flows and do not depend on the former states. 

Speaking more formally, this lack of memory 

corresponds to the adoption of 0sw  (for 0s ) 

and )()( ssw   (Dirac delta) in the formula (10) 

(in the case of discrete and continuous time model 

respectively). This leads to the following formula 

for probabilities of choosing paths after making the 

procedure:  

,)( 0

, ccA ptp   proc
      (11) 

where 2,1p  and ),min( 21

0 ccc  . In further 

examples we shall consider the special case 

with exponential dependence in (11):  

),exp())(exp( 0

, pptp ccc  proc
 

   (12) 

where 0  specifies the sensitivity of 
proc

tp,  

on the changes of the transportation cost. 

Normalization of (eq:11 additional) leads to the 

following multinomial logic formulas for 2,1p : 

 

(13) 

The graph of (13) as a function of 1h  is 

shown in Fig. 1.  

In next two examples, we will examine some 

properties of the dynamics of flows. Due to the 

complicated nature of the equations, even making a 

qualitative analysis of phase portrait requires 

application of some numerical procedures. The 

presented results have been obtained using the 

IDMC (Interactive Dynamical Model Calculator, 

see for example [11,12]) and from author's scripts 

written for R  software. 

 

Fig. 1. The graph of (13) for 1  and 

2110 hhD   

Example 1.  

Let us assume that the total demand is con-

stant ( DDt  ). In this case the formulas (8,9) 

have the following form:  

,
))(exp())(exp(

))(exp(
,

,22,11

,

,1, 

















 tp

tt

tpp

tptp h
hchc

hcD
hh






(14) 

.
))(exp())(exp(

))(exp(
,

,22,11

,

, dth
hchc

hcD
dh tp

tt

tpp

tp 
























(15) 

It is easy to check that the derivative (with 

respect to ph ) of the right hand side of both last 

formulas is locally bounded. This fact guarantees 

existence and uniqueness of solutions of initial 

problems for (14,15).  

Qualitative properties of the phase portrait 

depend significantly on the value of model 

parameters. For small demand, the results of 

procedures does not have a significant impact on 

the flows' distribution. Consequently, the dynamics 

of the system is relatively conservative and there is 

exactly one asymptotically stable equilibrium point 

for all values of ]1,0[ . As the demand grows the 

range of parameter   for which there is only one 

  .))(exp())(exp())(exp( 2211, hchchc pptp  proc
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equilibrium point shrinks. For sufficiently large 

values of   periodic solutions (with periods 2 ) 

and quasi-periodic ones occur. For larger values of 

  the dynamics is even more chaotic. For example, 

if 3 , there are some ranges of   where the 

dynamics is chaotic (see Fig. 2 and positive values of 

estimated Lyapunov exponents, Fig. 3). In practice, 

however, the value of   appears to be relatively 

small (although verification of this claim certainly 

requires a detailed study), so one does not expect a 

chaotic change of flows in a network (see Fig. 4). In 

the case of continuous time there is no chaotic 

dynamics in the network considered in this example. 

Depending on the parameter values one can observe 

stable critical points, periodic solutions, or - most 

frequently - quasi-periodic solutions.  

 

Fig. 2. Bifurcation diagrams for the parameter 

]1,0[  in (14). The another parameters are: 3 , 

10D  and initial state 2/| 01 Dh t  . 

 

Fig. 3. Lyapunov exponents for the system (14). The 

values of parameters are the same as in Fig. 2.  

 

Fig. 4. Two-dimensional bifurcation diagrams for the 

system (14) and parameters ,D  and 3 .    

Example 2.  

We will continue solving dynamic equations in 

the case considered in the previous example. The 

only difference is that the demand may vary over 

time. It is obvious that the detailed description of 

changes in demand for transport requires quite a 

subtle analysis of all sectors of the economy. In the 

first step of approximation we can neglect the 

external factors and assume that the demand rate of 

change and its deviation from the trend depend 

only on the current size of demand. This leads to 

the following formulas for continuous and discrete 

time model respectively:  

 tttttt DDrDDD  )()(1    (16) 

 ttttt dWDDrDdD )()(     (17) 

where r ,   define the average rate of transport 

demand and its standard deviation, )( t  and )( tW  

denote the white noise process and Wiener process 

respectively. In the simplest case, especially 

reasonable for short-term horizon, we can assume 

that the functions ,r  are constant. The aggregate 

demand is then defined as a process of geometric 

Brownian motion: 

 .)2/(exp

),1(

2

0

1

0

0

tt

t

t

sWtsrDD

rDD



 








  

The equations (8,9) and (16,17) have the 

following form:  

),1)(1(
)exp()exp(

)exp(
,

21

1,1, ttp

p

ttptp rh
cc

c
Dhh 




 




 

 

(18) 
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.)(
)exp()exp(

)exp(
,,

21

, ttptp

p

ttp dWhdthr
cc

c
Ddh 




 















(19) 

It is not hard to prove that for a given initial 

value of demand, there exists a strong solution of 

this equation and it is unique (i.e. solutions 

satisfying the same initial condition are equal 

almost surely). It seems to be impossible (or at 

least very hard) to find an analytic form of solution 

of (18,19). The expected value and standard 

deviation functions of the solution were calculated 

solutions using Milstein scheme (see [10]) 

implemented in the Stochastic Differential 

Equation (sde) package of R software. Sample 

trajectories of the solution is shown in Fig. 5, some 

of the estimated moments of the process tht ,1  

is shown in Fig. 6.  

Fig. 5. A sample path of total demand (left panel) and a 

flow along path 1 (right panel). The parameters are 

equal: 1.0 , 05.0r , 25.0s . Initial state 

2/| 01 Dh t  . 

 
Fig. 6. The expected value and standard deviation of 

flow along path 1 (left and right panels respectively). 

Results of Monte Carlo Simulations. Values of 

parameters are the same as in the previous figure. 

 

5. FINAL REMARKS 

In the considered examples, the demand for 

transport category was exogenous. Creating a more 

subtle versions of the models, including long-term 

analysis of demand, it is necessary to model the 

interaction between transport and economics. It 

obviously tends to increase the complexity of the 

model, because of the difficulties in the modeling 

of the relationships between transport and other 

sectors of the economy. It seems that the model 

describing the quantity and the spatial distribution 

of demand for transport should incorporate most of 

macro-characteristics of economic growth, for 

example the structure of population, the level of 

income, the size of GDP, volume of foreign trade, 

consumption, the structure of settlement networks, 

price indexes, the structure of employment, the 

degree of market liberalization (especially in 

transport sector), new technology, infrastructure, 

etc. ([3], [13]). 

Another issue of major importance is an 

appropriate choice of procedure (or class of them 

in the case of heterogeneous populations of 

carriers). The case of (generalized) markovian-type 

procedures, independently performed by different 

carriers, seems to play a crucial role in modeling 

dynamics of flows. In this case the spatial structure 

of flows may be (under some additional technical 

assumptions) obtained by solving the Chapman-

Kolmogorov equations (see for example [6]). 
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