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1. BASIC NOTATIONS 

 tD  – quantity demanded for finished prod-

ucts at time t . 

 tZ  – quantity of returns at a period t . 

 T  – planning horizon scope. 

 ,poz tI  – on-hand inventory quantity in the fi-

nished products warehouse. 

 ,z tI  – inventory state in the returns ware-

house at a period t . 

 ,np tI  – inventory state in the finished products 

warehouse at a period t . 

 zamQ  – optimal order batch quantity. 

 ,zam tQ  – order batch quantity at a period t . 

 prodQ  – optimal production batch quantity. 

 ,prod tQ  – production batch quantity at a pe-

riod t . 

 odzQ  – optimal recovery batch quantity. 

 ,odz tQ  – recovery batch quantity at a period 

t . 

 uQ  – optimal disposal batch quantity being 

underway. 

 ,u tQ – disposal batch quantity at a period t . 

 tB  – number of products with a pending or-

der status at a period t  
 zamL  – order batch lead time. 

 odzL  – recovery batch lead time. 

 prodL  – production batch lead time. 

 skzk  – unit cost of returns storage. 

 sknpk  – unit cost of new items storage. 

 Bk  – unit pending order cost. 

 bk  – unit lack-of-inventory cost. 

 rk  – unit recovery process cost. 

 uk  – unit disposal process cost. 

 zamk  – unit ordering process cost. 

 

2. INTRODUCTION  

Reverse logistics understood as the process of 

managing reverse flow of materials, in–process 

inventory, finished goods and related information 

has become one of the logicians' key areas of 

interest. It enjoys ever–increasing interest of many 

industrial branches. Nowadays a growing number 

of companies realize the meaning of that field of 

logistics.  

Inventory management is paid a great deal of 

attention to in literature on the issue. A lot of 

mathematical models referring to that field have 

been designed so far.[3,11]  

This article's purpose is to present models being 

modifications of a classical inventory control model 

in a periodic review system. The article describes 
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In reverse logistics systems demand can be partially satisfied with new items manufacture or procurement and re-

turned products value recovery. The products are brought back to the places where they are stored in most models 

presented in literature on reverse logistics. Value recovery processes are carried out in due time in order to meet the 

existing demand. Some part of returns can be disposed of.  

Inventory management has significant meaning in reverse logistics. This article's purpose is to present models being 

modifications of a classical inventory control model in a periodic review system.  The first model of that kind was 

developed by Simpson in 1978. Guided by similar assumptions, Inderfurth, Kiesmuller, Minner and Cohen, among 

others, designed periodic review models as well. 
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the models presented in literature by particular 

authors. 

 

3. AN ANALYSIS OF THE MODELS 

The first model dealing with a periodic review 

inventory management system was worked out by 

V. P. Simpson. In Simpson's model demand for new 

products Dt and the number of returns Zt at a period 

t, where t=1,2,3,…,T, are independent random 

variables. The known probability density function 

of two variables t(Dt,Zt) is the only thing that 

connects those variables. There are two warehouses 

in Simpson's model: a returns warehouse and a 

finished products warehouse. Inventory level Inp,t in 

the finished products warehouse and inventory level 

Iz,t in the returns warehouse are checked over at the 

beginning of each period. The warehouse inventory 

level can change as a result of new items purchase 

in quantity ,zam tQ , returns recovery in quantity ,odz tQ  

and returned products disposal in quantity ,u tQ . 

Purchasing and recovery lead time is not taken into 

account. One item purchasing and recovery costs 

are fixed: zamk  and rk  respectively. The author 

doesn't take into consideration the cost connected 

with disposal. Unfulfilled demand quantity is 

monitored in Simpson's model. Storage cost for 

goods in a finished products warehouse is 

calculated for each period. The function of the 

unfulfilled demand expected cost and the expected 

storage cost in a finished products warehouse for 

period t is the following: 

, 

where:  

snpk  – one item storage cost in the finished 

products warehouse, 

bk  – lack–of–inventory cost, 

npI  – initial inventory state in the finished 

products warehouse, 

zI  – initial inventory state in the returns 

warehouse. 

One returned item storage cost in the returns 

warehouse is skzk . The total returns storage cost  

TC2,t(Iz) is calculated analogically to the cost of 

storage and delay in the finished products 

warehouse. Simpson uses dynamic programming in 

order to determine an optimal cost quantity. He 

formulates the following optimization problem: 

 

Recursive dependence between inventory levels 

in the finished products warehouse and in the 

returns warehouse at particular periods is the 

following: 

 

Simpson works out a policy (Szam,t, Sodz,t, Sutyl,t) 

according to which, if the inventory level in the 

finished products warehouse is lower than Sodz,t  

then the inventory is replenished owing to returns 

recovery. If, on having decided to launch the 

recovery process, the inventory level in the returns 

warehouse and in the finished products warehouse 

is lower than Szam,t then the inventory is replenished 

owing to new products purchase. If after those 

decisions the joint inventory in the returns 

warehouse and in the finished products warehouse 

is larger than Sodz,t + Sutyl,t then the inventory disposal 

process is launched to reach the level  Sodz,t + Sutyl,t 

The mentioned above policy for  

Szam,t,Sodz,t,Sutyl,t 0 can be presented in the following 

way: 
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Simpson uses the Kuhn-Tucker conditions in 

order to determine the minimum of joint cost 

function.[9] 

Karl Inderfurth develops a model based on 

similar assumptions. Unlike his predecessor, he 

takes into account recovery process lead time Lodz 

and new products lead time Lzam expressed in the 

number of periods. Unfulfilled demand takes the 

form of pending orders. Inderfurth analyzes two 

cases in his works. He doesn't allow for returns 

storage in the first one. He eliminates that 

constraint in the second one. Inderfurth aims to 

minimize joint costs for all the periods at a 

particular planning horizon T.  

, 

where: 

TCzou(Qzam,t,Qodz,t,Qu,t) –  purchase, recovery and 

disposal joint costs at a period t, 

Ksknp(Inp,t) – joint costs of finished products 

storage at a period t, 

Kskz(Iz,t) – joint costs of returns storage at a 

period t, 

Inp,t – available inventory quantity in the finished 

products warehouse at the end of period t, 

Iz,t – available inventory quantity in the returns 

warehouse at the end of period t, 

 

Inderfurth notes that the difference between Lodz 

and Lzam is a factor that has significant impact on 

the model's level of complication. Inderfurth works 

out an optimal inventory carrying policy in a case 

when that difference is smaller or equal during one 

period.  

In the simplest case when the returns are not 

stored and Lodz = Lzam = L. Inderfurth uses policy 

(St,sut) where   St  su,t  + . According to that 

policy if on-hand inventory is lower than tS  then 

the recovery process of all the warehouse returns is 

launched. If on recovery process completion  the 

on-hand inventory level ,poz tI  is still lower than tS  

then new products are purchased. A disposal 

process is launched if the on-hand inventory level is 

higher than ,u ts . Excess inventory is disposed of. 

The remaining returns are subject to recovery 

processes. The on-hand inventory is determined on 

the basis of the current inventory state, returns from 

the previous period, purchase and recovery orders 

being underway, as well as inventory reservations 

within the pending order framework.[4]  

G.P. Kiesmuller and S. Minner are the following 

authors dealing with inventory control in reverse 

logistics systems. In their works [6,7] the authors 

present a model in which demand for finished 

products  tD  at particular periods is an independent 

random variable with the same probability 

distribution.  The distribution function DF  and the 

expected value D  are known. Unfulfilled demand 

takes the form of pending orders. Returns tZ  are 

described analogically to demand. The distribution 

function ZF  and the expected value Z are known. 

The difference between demand and returns is 

described by the distribution function FD-Z. The 

authors assume that returns don't depend on 

demand. Kiesmuller and Minner don't consider 

disposal. They assume that all the returns are 

recoverable. The authors model a production 

system in which the finished products warehouse is 

replenished with production and recovery. They 

take into account production and recovery lead 

time. They assume that a review takes place at the 

beginning of each period. The number of products 

that are to be manufactured and recovered is 

dependent on policy (Sprod, Sodz). Decisions about 

production and recovery quantity are made 

simultaneously but recovery has a higher priority. 

The on-hand inventory quantity Ipozp,t is used to 

define the production quantity. Recovery quantity is 

defined with the help of on-hand inventory Ipoz,t 

, 

where: 

,z tI  – available returns inventory at a period t . 

In a case when Lodz = Lprod = L the authors 

define Ipoz,t as a sum of available finished products 

inventory and production and recovery orders, 

which are being launched, decreased by pending 

orders. As recovery has a higher priority, one 

should additionally consider the available returns 

inventory while defining Ipozp,t .  

 

 



 An Analysis of Stochastic Inventory Control Models in Reverse … Logistics and Transport N
o
 2(11)/2010     

 
 

 100 

 

 In a case when  Lodz > Lprod: 

 

Kiesmuller and Minner develop the following 

cost model: 

. 

Mahadevan, Pyke and Fleischmann model a 

production system in which returns and demand are 

described by the Poisson distribution with 

parameters  D and Z. The system consists of a 

returns warehouse and a finished products 

warehouse. Storage costs in the mentioned above 

warehouses are different. The authors take into 

account new products lead time and recovery 

process duration. They are constant. Unfulfilled 

demand takes the form of a pending order.  

In the system described above a review is 

performed every R periods. All the returns that are 

in the returns warehouse at a given point in time 

undergo the recovery process. Recovery batch 

quantity Qodz,t is thus a random quantity. New items 

production is launched if on-hand inventory level 

Ipoz,t at the moment of review is lower than the 

target inventory level Sprod. Production batch 

quantity Qprod,t equals the difference between those 

quantities. The authors minimize the joint cost 

function by choosing the appropriate value of the 

target inventory level Sprod. The change of a variable 

value R helps to regulate the production batch 

quantity and the recovery batch quantity. The 

authors assume that R is given.  They use heuristics 

in their calculations. They create a simulation 

model PROMODEL. The joint cost function takes 

the following form: 

 

 where: 

npI  – average inventory level in the finished 

products warehouse, 

zI  – average inventory level in the returns 

warehouse, 

B  – average number of pending orders.[8] 

M. A. Cohen, S. Nahmias and W. P. Pierskalla 

focus on a periodic review inventory control system 

in their work as well. Each damaged product is 

substituted with a new one in the system.  Demand 

is thus equal to the number of returns. Damaged 

products are returned to a recovery center from 

which they are delivered to the finished products 

warehouse after time odzL  expressed in the number 

of periods. Some part (1  ) of returned products 

is not recoverable and leaves the system. Products 

shortage is replenished with new items purchase. 

New products lead time is not considered. Demand 

at particular periods is an independent random 

variable but with the same probability distribution. 

(1  z) of inventory is subject to spoilage at each 

period and is no longer stored. The authors don't 

take into account pending orders, excess demand is 

equated with lost sales. The orders being underway 

are not allowed in the on-hand inventory because 

new items are supplied when an order is placed. 

There are Ipoz,t items in the warehouse at the 

beginning of each period in the event that recovery 

process products have been delivered. ,zam tS  

products are to be found in the warehouse when the 

order for new items is fulfilled. Order batch 

quantity Qzam,t equals Szam,t  Ipoz,t. The authors take 

into account one item order cost. Fixed cost of the 

order service isn't considered. The function of joint 

storage cost and lost sales cost for one period is the 

following: 
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where: zepk  – unit product spoilage cost. 

In the total cost function TC  the authors take 

into account order service costs as well. The work 

aims to determine an optimal value zamS  for all the 

planning horizon for which the total cost function  

TC  reaches its minimum. The authors develop an 

order fulfillment optimal policy for a case when  

Lodz = 1. They specify an approximate solution for 

Lodz > 1.[2] 

Peter Kelle and Edward A. Silver create a model 

similar to that of Cohen. The authors develop an 

optimal policy for new products purchase using the 

example of reusable packaging. Kelle and Silver 

analyze net demand Dnett,t which at a period t is 

equal to the difference of actual demand Dt and the 

number of returned bags Zt suitable for reuse. 

Demand and returns are independent random 

quantities. All the returns undergo recovery 

processes.  The authors don't consider the disposal. 

Unfulfilled demand takes the form of pending 

orders and is satisfied during the further periods. 

The authors don't take into account the cost related 

with pending orders service. They substitute it with 

a consumer service demanded level which equals  

(1 t) for a period t. The authors try to minimize 

the joint cost of new bags purchase and returns 

storage while considering the demanded level of 

service.  The planning horizon includes  T periods. 

The purpose of the analysis is to specify an optimal 

order quantity Qzam,t where t = i+1,i+2,…,i+T  and 

i defines the current period. The joint cost function 

is the following: 

 

 where: 

(Qzam,t)=0 if Qzam,t=0 or (Qzam,t)=1 if 

Qzam,t>0, 

Inp,t = max{Inett,0} – inventory available in the 

warehouse at the end of period t, 

Inett,t – net inventory at the end of a period 

resulting from the difference between the 

inventory available in the warehouse and 

pending orders,  

 

The authors assume that the probability of 

meeting the demand with what is stocked in the 

warehouse equals at least (1 t). It's shown in the 

following formula: 

 

Kelle and Silver state that net inventory is a 

sufficient approximation of the actual inventory 

quantity for the service level used in practice, which 

is from 0,9 to 0,95. The authors reduce the 

presented above stochastic model to a deterministic 

model. Only a deterministic model is analytically 

solved. The authors note that it's a classical 

problem of determining production batch quantities 

in a deterministic model with variable demand for 

definite periods.[5] 

D. J. Buchanan and P. L. Abad describe 

reusable packaging inventory management system 

as well. The authors create a model similar to that 

of Kelle and Silver.  Buchanan and Abad analyze 

single- and multi-period model. As for multi-period 

model, the authors assume that the number of 

returns Zt at a period t  is a fraction az,t of all the 

products Az,t found on the market at the beginning 

of a period t. az,t is a random variable with a 

probability density function Fz,t(az,t). At each period 

some part of products found on the market (1 )  

isn't suitable for reuse. The authors take into 

consideration the cost kkhp connected with products 

that were not sold at the end of the analyzed 

planning horizon. Demand for new package Dt is a 

random variable with a density function fD,t(Dt) and 

a distribution function FD,t(Dt). The authors aim to 

minimize the joint cost in the analyzed planning 

horizon. They specify an optimal value zamQ . They 

use dynamic programming in order to solve the 

model. They assume that the time of product 

presence on the market is described by the 

exponential distribution [1]. 

The models presented above are based on the  

assumptions of a classical periodic review model. 

Subsequent authors R. H. Teunter and D. Vlachos 

developed a model which was the system modification. 

The authors developed a model similar to continuous 

review model that had been earlier introduced by Ervin 

Van der Laan and Marc Salomon. The authors 

analyze the system in a limited planning horizon 

consisting of  T time units. They consider equal 

recovery and production lead time L  which is a 

multiplicity of the accepted time units. 

Lodz = Lprod = L 
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Both recovery order and production order are 

launched at the beginning of the period. The authors 

allow that returns may be disposed of.  Disposal is 

carried out at the beginning of the period as well. 

Demand at each time unit is an independent random 

variable. The authors model the demand with the 

help of the Poisson distribution and the normal 

distribution. They allow that pending orders may 

occur. Returns are described in an analogous way. 

The authors assume that  the returns warehouse and 

the finished products warehouse are empty and 

there are no orders underway at the first period. 

Only production can be launched at the first period. 

The authors consider fixed and variable costs of 

production and recovery processes, as well as 

disposal process variable costs. The authors 

consider equal carrying cost of goods stored in the 

returns warehouse and in the finished products 

warehouse. They also take into account a discount 

factor  for costs in the analyzed planning horizon. 

The authors assume that recovery batch quantity 

Qodz and production batch quantity  Qprod are 

invariable. The inventory control policy that have 

been used is based on the same reorder point for 

recovery and production. A new batch is 

manufactured or recovered if the on-hand inventory 

level at the beginning of the period is lower or 

equals s  items, according to that policy. Recovery 

process is launched if there are at least Qodz items in 

the returns warehouse. Otherwise, it is a sign for 

starting the production process. The disposal 

process is launched if there are at least su returned 

items in the returns warehouse  at the beginning of 

the period after the possible decision to start the 

recovery. Excess returns are disposed of. Teunter 

and Vlachos analyze the model using a computer 

simulation.[10] 

 

4. SUMMARY 

The article deals with stochastic inventory 

management models in reverse systems based on a 

periodic review. The analysis presents particular 

authors' contribution to the development of reverse 

logistics theory. Their successors eliminate 

individual constraints creating more and more 

complicated mathematical models.  

The presented models are based on the 

assumption that demand for finished products can 

be satisfied with returns recovery, new items 

production or procurement. All the presented 

models assume that demand and returns have 

random character. In most analyses demand and 

returns are totally independent and described by the 

Poisson distribution with corresponding parameters. 

All the presented models deal with a single-item 

product. In most  works recovery, production, order 

or disposal batch quantities are determined on the 

basis of the current on-hand inventory state.  
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