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1. INTRODUCTION 
 Design of railway track geometrical layout 

consists of joining of certain characteristic points 
of the route using straight lines and arcs of the 
fixed and variable curvatures. At joining points, as 
a result of horizontal curvature changes, increased 
dynamic interactions in the vehicle-route system 
occur [12]. In the process of curvature modelling 
the designer tries to ensure smooth curvature 
changes, meeting specific conditions [10], through 
appropriate configuration of transition curves, 
providing the most advantageous dynamic 
properties of the layout. 

Investigation and evaluation of transition curves 
are still current, as evidenced by numerous 
publications on these issues. Two main trends can 
be distinguished in research aimed at extending the 
available options for modelling of transition 
curves: a direct shaping of the coordinates of the 
transition curve and an indirect one, achieved by 
modelling the curvature. In the papers [3, 6, 7], 
enrolling in the coordinates shaping trend, 
algorithms of construction of Bezier curves as 
transition curves in highway and railway layouts 
design have been presented. The advantageous 
application of cubic C-Bezier curves, presented in 
[3, 19] and Pythagorean hodograph quintic Bezier 
curves, presented in [6, 7], as transition curves 
joining two circular arcs with reverse curvatures 

(S-shaped transition) and consistent curvatures 
(C-shaped and C-oval transitions) has been 
confirmed in [12, 13] by successfully using 
considered curves in exemplary railway 
geometrical layouts.  

In the papers [12, 13] dynamic properties of 
Bezier curves have been evaluated in comparison 
to dynamic properties of K0 curve (a transition 
curve with linear curvature changes) and K1 curve 
(a transition curve with nonlinear curvature 
changes described by third degree polynomial of 
variable l standing for curve length), obtained by 
applying a universal method of curvature 
modelling. 

This paper presents a new method of curvature 
modelling – curvature of railway track geometrical 
layout is described by a cubic C-Bezier curve [19] 
and shaped by appropriate location of the curve 
control points. The coordinates of the control 
points are obtained in an optimization process 
carried out using Particle Swarm Optimization 
(PSO) algorithm with the optimization criteria 
based on the evaluation of the dynamic interactions 
in the vehicle-route system and the satisfaction of 
the geometrical constraints. 

In contrast to papers [3, 12, 13] in the presented 
method a C-Bezier curve has been applied for 
describing curvature of the railway geometrical 
layout instead of representing direct coordinates of 
the transition curve. This fundamental difference 
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requires additional effort to satisfy certain 
geometrical constraints imposed on each transition 
curve [10] but provides some promising 
opportunities due to direct curvature shaping. 
Taking into account current high speed challenges, 
an appropriate curvature shape (especially at 
joining points of segment with different curvature) 
is crucial from dynamic interactions point of view. 

 
2. CURVATURE MODELLING 

The regulations for highway and railway 
geometrical design impose a set of requirements  
on transition curves [10]. Satisfaction of imposed 
requirements is tightly connected with ensuring 
appropriate shape of curvature k(l) and its first and 
second derivatives, k’(l) and k’’(l) respectively. 
Numerous papers have been devoted to modelling 
curvature of the highway [2, 17, 18] and railway [ 
12, 13, 15] layouts.  

The universal method of curvature modelling, 
presented in [12], is based on the assumption that 
curvature function k(l) is a solution of the 
following differential equation:  

 
𝑘𝑘(𝑚𝑚)(𝑙𝑙) = 𝑓𝑓�𝑙𝑙, 𝑘𝑘, 𝑘𝑘′ , … , 𝑘𝑘(𝑚𝑚−1)�        (1) 

 
where: l  – arc length from the origin point of 
the curve to the chosen point along the curve, 
𝑘𝑘′(𝑙𝑙), ... , 𝑘𝑘(𝑚𝑚−1)(𝑙𝑙), 𝑘𝑘(𝑚𝑚)(𝑙𝑙) – successive 
derivatives of the curvature function k(l),  

with boundary conditions at the origin point 
(for l = 0) and at the end (for l = lk) of transition 
curve. The boundary conditions are: 

    

𝑘𝑘(𝑖𝑖)(0+) = �𝑘𝑘1 𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖 = 0                    
0 𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖 =  1, 2, . . . ,𝑛𝑛1

�     (2) 

          

𝑘𝑘(𝑗𝑗 )(𝑙𝑙𝑘𝑘−) = �𝑘𝑘2 𝑑𝑑𝑑𝑑𝑑𝑑 𝑗𝑗 = 0                    
0 𝑑𝑑𝑑𝑑𝑑𝑑 𝑗𝑗 =  1, 2, . . . ,𝑛𝑛2

�     (3) 

 
The order of the differential equation (1) is       

m = n1 + n2 + 2, while the obtained curvature 
function k(l) is of class Cn  in the range 〈0, 𝑙𝑙𝑘𝑘〉, 
where 𝑛𝑛 = min(𝑛𝑛1,𝑛𝑛2). The method enables 
joining the route segments of different curvature, 
including two circular arcs with consistent and 
reverse curvatures (C-shaped, C-oval and S-shaped 
transitions), using transition curves with linear and 
nonlinear curvature changes, depending on the 
assumed order of differential equation (1) and a set 
of boundary conditions (2)-(3). Presented in [12] 
Ko curve, has been obtained as a solution to the 
following second order differential equation:  

 
𝑘𝑘′′ (𝑙𝑙) = 0             (4) 

 
with boundary conditions: 
 

�𝑘𝑘
(0+) = 𝑘𝑘1
𝑘𝑘(𝑙𝑙𝑘𝑘−) = 𝑘𝑘2

�       (5) 

 
The obtained curvature – Ko curve, a linear 

function of curve length l joining two circular arcs: 
 

𝑘𝑘(𝑙𝑙) = 𝑘𝑘1 + 1
𝑙𝑙𝑘𝑘

(𝑘𝑘2 − 𝑘𝑘1)𝑙𝑙                  (6) 
 
is used in this paper as a reference curvature in 

a comparative analysis of dynamic properties of 
transition curves obtained by the method presented 
in this paper (Section 5).  

After obtaining curvature k(l), the primary task 
is to determine the coordinates of the transition 
curve in a Cartesian coordinate system x, y. It is 
assumed that the origin point O of the system is 
located at the end point of the curve with the 
curvature k1 and x-axis is tangent to the curve at 
that point (Fig. 1). The equation of the desired 
transition can be written in a parametric form:  

 
𝑥𝑥(𝑙𝑙) = ∫ 𝑐𝑐𝑐𝑐𝑐𝑐 𝛩𝛩(𝑙𝑙)𝑑𝑑𝑑𝑑     (7) 

 
𝑦𝑦(𝑙𝑙) = ∫ 𝑠𝑠𝑠𝑠𝑠𝑠 𝛩𝛩(𝑙𝑙)𝑑𝑑𝑑𝑑       (8) 

  
The parameter l represents a current position of 

the chosen point along the curve length. The 
function of slope of the tangent 𝛩𝛩(𝑙𝑙) is defined by 
the formula:  

 
             𝛩𝛩(𝑙𝑙) = ∫𝑘𝑘(𝑙𝑙)𝑑𝑑𝑑𝑑                    (9) 

 
In the study [15] an application of evolution 

programming to modelling curvature of railway 
layout has been presented. The curvature 
monotonicity condition has been ensured a priori 
by encoding of the curvature ordinates increments. 
A classical set of genetic operators has been widen: 
apart from mutation and crossover has included 
inversion, deletion, duplication and filtering 
operators, ensuring desirable curvature changes 
during the optimization process. 

  
3. THE PROPOSED METHOD 

This paper presents an idea of describing a 
curvature by a cubic C-Bezier curve [3, 19], 
defined parametrically as follows:  
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for the parameter t in the interval 0 ≤ ≤
2
. 

Among the control points { } =0
3  of Bezier curve, 

the points  and    are at the same time Bezier 
nodes and the tangency points of the curve and the 
consistent arcs (R1 > R2) with curvatures k1 and k2 
(Fig. 2). 

 

 
Fig. 1. Transition curve joining two circular arcs with 

consistent curvatures 
 

 
Fig. 2. Curvature of the transition curve joining two 

circular arcs with consistent curvatures 
 

The geometrical layout of a transition curve 
joining two circular arcs with consistent curvatures 
is presented in Figure 1. It is assumed that the 
locations of the arc centres C1 and C2 are given as 
the requirements of a design task. The location of 
the point C, which is the centre of the circular arc 
with a radius perpendicular to the curve tangent at 
the curve end point, depends on the curvature, 
from which using formulas (7) – (9) transition 
curve coordinates x, y are determined. 

 The first derivative of the curvature (10) is 
given as follows:     

 
The second derivative of the curvature (10): 

 

 
In the paper [3] a C-Bezier curve (10) has been 

applied for describing a transition curve Cartesian 
coordinates x, y and an algorithm for determination 
of the curve control points { } =0

3  ensuring the 
satisfaction of the geometrical constraints has been 
presented. In this paper a C-Bezier curve (10) 
describes the curvature of the transition curve 
while its control points { } =0

3 , uniquely defining 
the curvature, are obtained in the optimization 
process presented in Section 4. Particle Swarm 
Optimization algorithm [9] with the optimization 
criterion based on the dynamic properties 
evaluation has been applied for determination of 
the control points coordinates. The effectiveness of 
application of PSO algorithm for determining the 
control points of NURBS (Non-Uniform Rational 
B-Spline curves) curve has been proved in [5]. 

 
4. OPTIMIZATION PROCESS 
4.1 Optimization criteria 

 Minimization of dynamic interaction in the 
vehicle-route system was an essential criterion in 
the numerous papers devoted to the curvature 
modelling [2, 12, 13, 15, 17]. Evaluation of the 
dynamic properties has been carried out using 
various dynamic models and methods. The most 
common method of transition curves evaluation is 
based on analysis of the Lateral Change of 
Acceleration (LCA) diagrams [1, 2, 17].  

The optimization criteria applied in this paper 
are based on the model and method of the dynamic 
interactions evaluation presented in [11, 15]. The 
essential element of the dynamic interactions 
analysis is the determination of the oscillations 
function X(t) and the resultant acceleration of the 
oscillating motion X’’(t) in the areas of horizontal 
curvature changes. The changes of horizontal 
curvature are a forcing factor of the lateral 
oscillations and the function of lateral unbalanced 
acceleration ( ) along the transition curve, as it is 

   (12) 

      (11)   
 



Modelling of Curvature of the Railway Track… Logistics and Transport No 1(21)/2014 
 

 76 

proved in [11], results directly from a function of 
curvature 𝑘𝑘(𝑙𝑙). In the study [15] a numerical 
method for the determination of the function of 
oscillations X(t) has been presented using a simple 
forced oscillations model of a mass with a spring 
and a dumper. The second-order differential 
equation describing the forced oscillations is 
solved by Störmer method [4] through a 
transformation into a recursive equation (13):  
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where: 
Xi+1 – output sample of oscillations,  
h – size of the discretization step, 
ai – discretized i-sample of the lateral 
unbalanced acceleration a(l) resulting directly 
from the curvature k(l), 
ω – free oscillation frequency, 
D – Lehr’s damping coefficient [11]. 
 
This method has been used in the presented 

optimization process as an essential element of the 
optimization criterion. The optimization criterion 
based on dynamic analysis consists of the 
determination of the oscillations function X(t), the 
resultant acceleration of the oscillating motion 
X’’(t) and the evaluation these properties in terms 
of a real number (i.e. criterion value). The criterion 
value plays only a comparative role, allowing to 
create a transition curves rank list and steering the 
optimization process towards curvatures with 
better dynamic properties. 

In order to prove the usefulness of the dynamic 
criterion, the evaluation of selected transition 
curves: clothoid curve, Bloss curve, sinusoidal 
curve, Tari-1 curve [17], G1 and G2 curves [18] 
has been carried out. All mentioned curves have 
been applied as a transition curve of the length 
l=100 m, joining a straight line with a circular arc 
(with radius R=500 m), on which the unbalanced 
centrifugal acceleration amax=0,6 m/s2. The 
curvature formulas of the transition curves, that are 
evaluated, have been presented in Table 1. 

 
 
 
 
 
 
 

Table 1. Curvature formulas for the evaluated curves 
Curve type Curvature formula 

Clothoid curve 𝑘𝑘(𝑙𝑙) = 𝑙𝑙
𝑅𝑅𝑅𝑅

  

Bloss curve 𝑘𝑘(𝑙𝑙) = 1
𝑅𝑅
�3𝑙𝑙2

𝐿𝐿2 −
2𝑙𝑙3

𝐿𝐿3 �  

Sinusoidal curve 𝑘𝑘(𝑙𝑙) = 1
𝑅𝑅
�𝑙𝑙
𝐿𝐿
− 1

2𝜋𝜋
sin 2𝜋𝜋𝜋𝜋

𝐿𝐿
�  

Tari-1 curve [17] 𝑘𝑘(𝑙𝑙) = 𝑙𝑙3

𝑅𝑅𝐿𝐿3 �
6𝑙𝑙2

𝐿𝐿2 −
15𝑙𝑙
𝐿𝐿

+ 10�  

G1 curve [18] 𝑘𝑘(𝑙𝑙) = 𝑙𝑙2

𝑅𝑅𝐿𝐿2  

G2 curve [18] 𝑘𝑘(𝑙𝑙) = 1
𝑅𝑅
�𝑙𝑙
𝐿𝐿
  

 
The curvatures of the evaluated curves are 

presented in Figure 3. The accelerations of 
oscillating motion X’’(t) – a base for the dynamic 
properties evaluation of the selected transition 
curves, are presented in Figure 4. The accelerations 
of the oscillating motion X’’(t) have been 
computed using formula (13) with the assumed 
values of the parameters (for a rail vehicle): free 
oscillation frequency ω = 3.5 1/s, Lehr’s damping 
coefficient D = 0.175, the same constant velocity 
v = 120 km/h. 

In order to express the evaluation results in 
terms of real numbers (i.e. dynamic criterion 
value) and to extract oscillations, the signal of the 
acceleration of oscillating motion X’’(t) is filtered 
using a IIR highpass Butterworth digital filter of 
11th order [8] with normalized frequencies 0.025 or 
0.055, depending on the assumed transition curve 
length. The filtered signals (with normalized 
frequency 0.025) of the acceleration of oscillating 
motion X’’(t) for the evaluated transition curves 
are presented in Figure 5. The filter parameters 
have been adjusted using iir and flts 
functions from SciLab v. 5.4.0. 
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The two areas of the increased dynamic 
interactions – the transition curve origin and end 
points are noticeable in Figures 4 and 5. 
Usefulness of the filter application (Figure 5) is 
particularly evident in comparison of Bloss curve, 
sinusoidal curve and Tari-1 curve. The analysis of 
the filtered acceleration in the oscillating motion 
X’’(t) indicates significantly better dynamic 
properties of a sinusoidal curve and a Tari-1 curve 
(lower maximal acceleration amplitudes in the 
neuralgic areas – in Figure 4 practically 
imperceptible) in comparison to a Bloss curve. 
There is a tight relationship between the dynamic 
properties of the transition curve and a continuity 
class of its curvature function [11, 12, 13, 14]: 
higher class of continuity, especially continuity at 
joining points not internal continuity along 
transition curve, leads to lower dynamic 
interactions in the vehicle-route system.  

Much less favourable dynamic properties has 
been found for clothoid curve, G1 and G2 curves. 
In Figures 6-7 accelerations in oscillating motion 
X’’(t) at the curves origin points (joining of straight 
line and transition curve) and curves end points 

(joining of transition curve and circular arc) have 
been presented. G1 curve has advantageous 
dynamic properties near its origin point, having by 
far the worst properties in the end area. G2 curve 
conversely: favourable properties in the end area 
(better than clothoid curve) are occupied by 
significantly poorer properties in the origin area. 

 

 
Fig. 6. Acceleration in oscillation motion X’’(t) in the 

origin area: clothoid, G1 and G2 curves 
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Fig. 7. Acceleration in oscillation motion X’’(t) in the 

end area: clothoid, G1 and G2 curves 
 

The conclusions resulting from above analysis 
were reflected in dynamic criterion values, 
presented in Table 2.    

 
Table 2. Dynamic criterion values for selected 

transition curves 

Curve type 
Dynamic 
criterion 

value 
Curve type 

Dynamic 
criterion 

value 

Clothoid  52,1561 Tari-1 curve [12] 0,0507 

 Bloss curve 1,1580 G1 curve [13] 52,2726 

Sinusoidal 
curve 0,0335 G2 curve [13] 438,5470 

 
The obtained dynamic criterion values indicate 

a significant advantage of sinusoidal curve and 
Tari-1 curve over clothoid, G1 and G2 curves – a 
conclusion is consistent with the results of the 
analysis based on  acceleration of oscillating 
motion X’’(t) diagrams. 

Based on the data from Table 2, it is expected 
that in the optimization process with dynamic 
criterion transition curves with non-linear, 
symmetrical curvature (criterion equally 
considered the dynamic interactions occurring in 
the origin and end areas of the curve) will be 
obtained. 

Apart from the dynamic criterion, fitness 
function (14) includes an element connected with 
minimization the distance between center C2 of a 
given circular arc and center C of the obtained arc 
with radius perpendicular to transition curve 
tangent at the end point (Figure 1). 
 
𝐹𝐹𝐹𝐹 = 𝑤𝑤𝑑𝑑 ∫ 𝑋𝑋′′𝑙𝑙+𝛿𝛿

0 (𝑡𝑡)𝐹𝐹 + 𝑤𝑤𝑝𝑝‖𝐶𝐶 − 𝐶𝐶2‖ → 𝑚𝑚𝑚𝑚𝑚𝑚        (14) 
 
 
 

where:  
wd, wt and wb – are arbitrarily adjusted weights, 
δ – length of the straight line section on which 

dynamic effects occur after leaving a 
transition curve with length l. 

 
4.2 Optimization algorithm 

Particle Swarm Optimization (PSO) algorithm 
[9] has been applied for determining curvature. 
PSO performs a population-based search using 
moving particles to represent potential solution – 
searched curvature, defined unambiguously by 
control points coordinates {𝑷𝑷𝒊𝒊}𝑖𝑖=0

3   (Table 3).  
 

Table 3. Structure of a particle 

x-coordinates y-coordinates 

P0x=0 P1x P2x P3x P0y=k1 P1y P2y P3y=k2 

 
Among 8 coordinates of control points {𝑷𝑷𝒊𝒊}𝑖𝑖=0

3 , 
3 have assumed values (cells with gray background 
in Table 3) while five others are obtained in the 
optimization process carried out using PSO 
toolbox v. 0.7-1 [16] in SciLab v. 5.4.0. Assumed 
values guarantees a priori meeting conditions (2) 
and (3) imposed on the transition curve curvature 
[10].   

In PSO algorithm each particle is characterized 
by its fitness value, current position, current 
velocity and a record of its past performance. 
Particle change their positions and velocities in the 
direction dependent on the best recorded own 
position, position of other particles and current 
velocity. Velocity of each particle in the swarm is 
updated in each iteration according to the 
following formula: 
 
𝑣𝑣𝑖𝑖𝑖𝑖 = 𝜔𝜔 × 𝑣𝑣𝑖𝑖𝑖𝑖 + 𝐶𝐶1 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅( ) × �𝑝𝑝𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑝𝑝𝑖𝑖𝑖𝑖 � +

𝐶𝐶2 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅( ) × �𝑝𝑝𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑝𝑝𝑖𝑖𝑖𝑖 �   (15) 
 
where: 𝜔𝜔 – inertia coefficient, changing during the 
execution of the algorithm as follows: 
 

𝜔𝜔 = 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑛𝑛 × 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 −𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁

         (16) 
 

N – total number of iterations, 
n – current iteration number, 
𝐶𝐶1 ,𝐶𝐶2 – individual and swarm learning 
coefficients, 
Rand() – random value from interval (0,1); 
𝑝𝑝𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  – the best recorded so far particle 
position (individual best position); 
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𝑝𝑝𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  – the best recorded so far position of 
other particles (global best position). 

 
Position of each particle is updated in each 

iteration according to the equation: 
 

            𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖              (17) 
 
PSO flow chart is presented in Figure 8.  

 

 
Fig. 8. Particle Swarm Optimization algorithm flow 

chart 
 
5. RESULTS 

The presented method of curvature modelling 
has been applied to determine a transition curve 
joining two circular arcs Ω1 and Ω2 with consistent 
curvatures (Table 4). The arc Ω2 is inside the arc 
Ω1; location of the centre C2 of the arc Ω2 has been 
obtained as a result of K0 curve (6) construction 
using the universal method of curvature modelling 
(Section 2). 

 
 
 

 
 

Table 4. Geometrical parameters of two circular arcs 
with consistent curvatures 

 
Location of the arc center Radius R [m] of the arc  

C1 (0;700) R1 700 

C2 (41,22; 506,42) R2 500 

 
Due to application of the element 𝑤𝑤𝑝𝑝‖𝐶𝐶 −

𝐶𝐶2→𝑚𝑚𝑖𝑖𝑛𝑛 in the fitness function (14) the presented 
method enables to obtain transition curves with a 
tangent perpendicular to the radius of a given 
circular arc Ω2 at the end point – a given location 
of the arc centre C2 is preserved and treated as a 
geometrical constraint that should be satisfied. 
This feature is valuable: through adjusting the 
weight 𝑤𝑤𝑝𝑝  in the optimization process it is possible 
to obtain a curvature of the transition curve 
preserving a given centre location of the arc Ω2. 

The control points of curvatures presented in 
Table 5 have been obtained as a result of two 
optimization processes lasted n=200 iterations each 
using the fitness function (14) with wages  
𝑤𝑤𝑑𝑑  and 𝑤𝑤𝑝𝑝  . It has been assumed that P0x=0, 
P0y=1/R1, P3y=1/R2. 

 
Table 5. Coordinates of the control points of resulting 

curvatures 

 

 

No 𝑤𝑤𝑑𝑑  𝑤𝑤𝑝𝑝  P1x P2x P3x P1y P2y 

1 1 2 91,76 127,16 392,03 0,001428892 0,001999588 

2 1 0,1 143,21008 143,2101 301,03 0,001428572 0,001999805 

Fig. 9. Curvatures obtained in the optimization processes 
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 On the basis of obtained curvatures (Figure 9), 
using formulas (7)-(9) coordinates of the resulting 
transition curves are determined (Figure 10). The 
geometrical parameters of the resulting transition 
curves are presented in Table 6.  

 Both optimization processes have been carried 
out using parameters presented in Table 7. 
Parameters 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 , 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐶𝐶1 , 𝐶𝐶2 and N are used in 
formulas (15)-(16). 

 
 
 

Table 7. Parameters of the PSO algorithm 

Parameter Value 

Initial inertia parameter 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚  0,9 
Final inertia parameter 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚  0,4 
Individual learning coefficient   𝐶𝐶1  0,7 
Swarm learning coefficient  𝐶𝐶2  1,47 
Iterations number N 200 

 
The course of the optimization processes is 

presented in Figure 11. Both processes converge to 
optimal solution after approximately 100 iterations. 

Table 6. Parameters of the resulting transition curves 
No 𝑤𝑤𝑑𝑑  𝑤𝑤𝑝𝑝  Dynamic 

criterion value  
Shift of the arc Ω2 
centre ‖𝐶𝐶 − 𝐶𝐶2‖ 

[m] 

Joining point of 
transition curve and arc 

Ω2 [m] 

Transition curve 
tangential angle at the 

end point  

Length 
[m] 

1 1 2 1,57047 0,0001965 (363,29; 123,96)  0,6998911 392,06 

2 1 0,1 0,5904005 1,0011463 (289,04;  71,05) 0,51801 301,11 

 

Fig. 10. Resulting transition curves compared with K0 curve 
 

Fig. 11. Fitness function value in successive iterations of optimization processes 1 and 2 
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The transition curve 1, obtained as a result of 
the process 1, in which greater emphasis was put 
on the minimization of required shift of the centre 
of the arc Ω2, based on dynamic criterion value 
(Table 6) has less favourable dynamic properties 
than transition curve 2 (1,57047 to 0,5904). The 
main objective of the second optimization process, 
expressed by weight ratio wd/wp, was minimization 
of the dynamic interactions occurring in the 
vehicle-route system. The dynamic criterion values 
results from the acceleration in oscillating motion 
X’’(t) (Figure 12) or precisely on its filtered 
version X’’(t)F (Figure 13). Both obtained 
transition curves have more advantageous dynamic 
properties than K0 curve (the dynamic criterion 
value for K0 curve equals 52,16). 

 In Figure 13 the filtered acceleration of 
oscillating motion X’’(t) is presented. The filtration 
process is carried out using a IIR highpass 
Butterworth digital filter of 11th order [8] with 

normalized frequency 0.055. The filtered signal 
X’’(t)F is integrated during computation of the 
dynamic criterion values – formula (14). The most 
advantageous dynamic properties of transition 
curve 2 result from the lowest maximal amplitude 
of filtered signal X’’(t)F. (≈0,0012 m/s2). The 
maximal amplitude of the filtered signal for K0 
curve is approximately 102 times higher.  

 
6. CONCLUSIONS 

 The method of curvature modelling, presented 
in this paper, enables flexible shaping of  curvature 
of transition curve. Obtained transition curves have 
advantageous dynamic properties and satisfy given 
geometrical constraints: preserve location of the 

centre of the arc Ω2, preserve conformity of 
tangential angles at joining points.  

The essential novelty of the method is to 
describe curvature of the designed layout as a 

Fig. 12. Acceleration in oscillating motion X’’(t) 
 

Fig. 13. Filtered acceleration in oscillating motion X’’(t)F 
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cubic C-Bezier curve [19] and shape it in the 
optimization process with the dynamic criterion by 
changing locations of the control points. The 
experiments proved that Particle Swarm 
Optimization algorithm can be efficiently applied 
to search for optimal coordinates of control points 
that determine unambiguously cubic C-Bezier 
curve.  
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