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1. INTRODUCTION 
The relationship between road accidents and 

factors influencing their number has been a focus 
of research for a long time (Satterthwaite, 1981; 
Hauer, 1986, 2004), but modern analyses, based on 
the generalised Poisson distribution have emerged 
in the last twenty years. Researchers have 
developed many different models and functional 
forms depending on data availability, local 
conditions and study purpose. Models based on the 
Poisson distribution or its generalisations are most 
widely used. Some common models include: 
Poisson lognormal – PLN (Miaou et al. 2005, Lord 
and Miranda-Moreno 2008, El-Basyouny and 
Sayed  2009B), multivariate Poisson lognormal - 
MPLN (Ma and Kockelman 2006, Tsionas 2001, 
Park and Lord 2007, El-Basyouny and 
Sayed,2009A, Ma et al.,2008), negative binomial – 
NB (Miaou 1996, Vogt 1999, Lord and Park 
2008), zero-inflated Poisson – ZIP (Li et al.,1999), 
Conway-Maxwell-Poisson- COM-Poisson (Lord et 
al. 2009) and generalized estimating equations – 
GEE (Wang and Abdel-Aty 2007, Lord and 
Persaud 2000). All of these models contain 
functional forms which describe the relationship 

between independent variables and the dependent 
variable (number of accidents). 

Hauer (2004) and Hauer and Bamfo (1997) 
stress that in most applications of standard 
statistical software, only monotonic functions are 
used to model the relationship between variables. 
They argue that the choice of functional form to 
describe the relationship between variables should 
be based on an exploratory analysis in which 
alternative functions are tested and compared. The 
main research problems addressed in this paper 
are: 
1. What functional forms have been used in prior 

accident models? 
2. Do different functional forms produce different 

estimates of the relationship between 
variables? 

3. How can the best functional form be chosen? 
Following a brief review of the literature, a 

Norwegian data set will be analysed by means of 
different functional forms and the results 
compared. 
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prediction models. 
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2. LITERATURE REVIEW 
 During more than 30 years of accident 

modelling, many functional forms have been 
applied. Let ),(f)n(P iii εµ=  denote the 
probability mass function with random error iε  
and parameter µ  (more than one parameter is 
possible). Then a function can be written as 

)x,(g ji βµ =  where Xj are independent variables 
characterising for example pavement, road 
geometry and traffic volume and β is a vector of 
parameters. Some of the functional forms used in 
prior studies are listed in Table 1. In every model 
AADT (annual average daily traffic), which 

represents traffic volume has been found to be the 
most important factor influencing the number of 
accidents. 

All functional forms included in Table 1 can be 
represented as exponential functions of a linear 
combination of parameters and variables (in order 
to meet Poisson regression model assumption 
(Winkelmann, 2008)). The variables included in 
this linear combination can be entered either in 
natural units or can be non-linear transformations 
of the original variables.  

The question is which functional form should 
be used in particular situation. Both type of model 
and functional form depend on characteristics of 
the data and accident severity (Lord at al., 2005). 

Table 1. Overview of some functional forms used in previous studies 
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For example, a PLN model has been applied to 
crash count data recorded on urban roads in the 
city of Vancouver (El-Basyouny and Sayed, 
2009b). A MPLN model has been applied to crash 
count data recorded on different types of roads: 
two-lane highway segments (Ma at al., 2008), 
three-leg un-signalised intersections in California 
highways (Park and Lord, 2007), signalised 
intersections in the city of Edmonton (El-Basyouny 
and Sayed, 2009a). A NB model has been applied 
to crash count data recorded on various types of 
roads such as two high speed roads: highways in 
Central Florida (Abdel-Aty and Radwan, 2000), 
rural interstate highways in Indiana 
(Anastasopoulos and Mannering, 2009), rural 
frontage roads in Texas (Li at al., 2008) and 
differentiated roads in 92 counties of Indiana 
(Karlaftis and Tarko 1997). The GEE model has 
been applied to crash count data recorded only on 
intersections: four-legged signalised intersections 
in Toronto (Lord and Park, 2008) and selected 
intersections in Florida (Wang and Abdel-Aty, 
2007). The GLM (generalized linear model) has 
been used with Poisson error structure for 
establishing the relationship between accidents and 
geometry for many types of junctions (3,4-Arm 
roundabouts, major-minor, signalized and other) 
(Maher and Summersgill, 1995). The data 
considered in this paper represent national roads in 
all Norwegian counties (highways, rural roads and 
urban sections).  

 The PLN model was chosen because the 
empirical distribution of the count of accidents 
between road sections fitted best to the Poisson-
lognormal distribution (see point 3.2.). 

 
3. DATA AND METHODS 
3.1  Functional forms tested 

The PLN model was used in order to compare 
different functional forms in this paper. This model 
was chosen because it is easy to estimate and more 
flexible than the negative binomial with respect to 
over-dispersion (Lord and Mannering, 2010). 
However, the Poisson lognormal model is 
adversely affected by small sample size (Miaou et 
al., 2003). The sample set used in this study is 
large enough (25,739 road sections) to enable the 
effective use of PLN model. The probability  βj   of 
road segment i having 𝜆𝜆𝑖𝑖  accidents is: 
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where iλ   is the Poisson parameter representing 
expected number of accidents  )( inE  for segment 
i. Poisson regression defines the parameter 

)( ii nE=λ as a function of explanatory variables, 
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where Xj  are covariates representing traffic 
volume and characteristics of the roads, βj are 
parameters,  g(Xji, βj) is a functional form, iε  
denote error terms distributed as ),0( 2σN  (normal 
distribution with mean value of zero).  

According to Noland and Karlaftis (2005) the 
selection of the appropriate functional form must 
be dedicated by the nature of the dependent 
variable. The functional forms considered below 
include variables that are intuitively connected 
with the number of accidents. On the basis of the 
literature review as well as available data, after 
analysis of scatter plots for number of crashes and 
independent variables it was decided that in 
addition to basic log-linear functional forms, 
functions with speed limit squared as in Ma et al. 
(2008), natural logarithm of number of lanes plus 1 
and natural logarithm of number of junction plus 1, 
as in Elvik (2008) would be taken into 
consideration.  

Six different functional forms have been 
compared (note that )exp(' 0ββ =o  ):  
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The subscripts from 1 to 9 denote different 
independent variables, identified in Table 5. 
Functional form g1, as the only one, contains 
annual average daily traffic (AADT) in natural 
units. In all other models, the natural logarithm of 
AADT has been used.  The parameters of each 
function have been estimated using the maximum 
log likelihood method with basic discrete Newton 
algorithm (Winkelmann, 2008). In this study, the 
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LIMDEP software package was used to estimate 
all the coefficients. 
 
3.2 Measures of goodness-of-fit 

To compare the crash prediction models, a 
single measure of goodness of fit is not enough 
(Lord and Park, 2008). In the present study five 
measures of goodness-of-fit were employed: 
1. Akaike’s Information Criterion (AIC) 

   
N

kML
AIC j 2)(ln2 +−

=                 (9) 

where lnL(Mj) is a log-likelihood value of 
model j, k is the number of parameters and N 
is the number of observations (here 
N=25739). 

2. Bayesian Information Criteria (BIC) 
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where D(Mj) is a deviance of model Mj. 

3. Mean absolute deviation (MAD) 
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where iy  is the estimated number of crashes 
in segment I and yi is the observed number of 
crashes in segment i. 

4. Mean squared prediction error (MSPE) 
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5. MAPE measure of fit 
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Because of the occurrence of cases where 
observed number of crashes equaled zero, the 
smoothed out version (14) was applied: 
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where y  is the mean of the observed 
number of crashes per road section. 

The model performance is better if the test 
values are smaller, except for the R-squared 
measure, where a high value indicates a good fit.   

Another measure of goodness of fit, indicating 
whether a certain functional forms first the data 
closely was proposed by Hauer and Bamfo (1997)  
and is known as the CURE method (CURE = 
cumulative residuals).  This graphical method has 
been used extensively in safety analysis (e.g. Lord 
and Park, 2008; Lord and Persaud, 2000; Wang 

and Abdel-Aty, 2007, Couto and Ferreira, 2011) 
and in many other scientific areas (e.g. Lin at all, 
2002) to compare different functional forms. The 
cumulative residuals are plotted for each 
explanatory variable. The residuals (ei)  represent 
the difference between the observed (yi) and 
estimated ( )iŷ  number of crashes. The closer the 
residuals oscillate around zero line, the better the 
model fits to the data. For variables with a limited 
range of values (less than 30) cumulative residuals 
box and whiskers plot (CRBW) have been applied. 
This method permits an evaluation of how well the 
model fits the data set especially for the one 
chosen explanatory variable. The standard CURE 
is very useful for continuous variables like AADT. 

In order to choose between the most often used 
models for accident prediction analysis (PLN or 
NB – negative binomial) the matching between 
each models to entry data (numbers of accidents) 
was checked. The original Poisson’s model was 
also considered for the sake of comparison. The 
resulting parameters are shown in Table 2.  

 
Table 2. Parameter estimates with standard errors (in 

parentheses) 

Distribution Parameter 

Poisson lambda 1,9982 (0,005) 
Negative – binomial lambda 1,9982 (0,015) 

alpha 2,6475 (0,049) 
Poisson lognormal lambda 0,5039 (0,013) 

sigma 1,3332 (0,005) 

Source: personal study. 
 

The goodness of fit for each distribution was 
measured by three measures: chi-squared statistics 
value, log-likelihood value and AIC. The results 
were listed in table 3. 
 
Table 3. Goodness of fit measures for different models 
Goodness of fit measure Poisson NB PLN 

Log-likelihood -60473 -38576 -37908 
AIC 4,6989 2,9976 2,9457 

2χ  233303 43793 45128 

Source: personal study. 
 
In order to enable the visual evaluation of the 

matching of each of the distribution types, the 
estimated number of crashes for each type of the 
accidents within each of the three types of 
distribution was listed below: 
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Table 4. Distribution of road sections by total number of 
crashes 

Number 
of accidents Accidents frequency 

 data Poisson NB PLN 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
>20 
 

2χ  

14109 
5689 
2397 
1217 
714 
386 
287 
199 
129 
92 
71 
60 
62 
46 
29 
26 
29 
20 
16 
15 
13 
39 

3490 
6973 
6967 
4640 
2318 
926 
309 
88 
22 
5 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
 

19754,9 

12851 
4082 
2365 
1576 
1120 
824 
621 
476 
369 
289 
228 
181 
144 
116 
93 
75 
60 
49 
40 
32 
26 
119 
 

15924,3 

14045 
5666 
2490 
1253 
707 
443 
296 
200 
132 
87 
62 
50 
45 
42 
39 
34 
28 
22 
16 
12 
8 
62 
 

477,7 

Source: personal study. 

From tables 2-4 it can be seen that the PLN 
(Poisson lognormal) and NB (negative binomial) 
distributions fit much better than standard Poisson 
distribution. Both of them generate long tails 
which are very important especially for variables 
with higher variation. The hypothesis on the 
matching of the distributions with theoretical 
values was tested. The values of statistics χ2 clearly 
indicate that PLN empirical model is the best fit. 
Therefore the PLN model was used in further 
considerations. 

 

3.3 Data 
The data refer to 25,739 segments on national 

roads in Norway. For these sections, data on 
accidents and a number of variables associated 
with the number of accidents were obtained for the 
period 1993-2000. The dependent variable in the 
analysis was the total number of injury accidents. 
The data contain ten explanatory variables 
describing geometric characteristics, traffic flow 
and additional information. There were 33,691 
accidents in total, 1437 (4.26 %) of which were 
fatal. There were 14,109 (55 %) sections with a 
zero count of accidents. The highest number of 
accidents recorded for a road section was 96. 
Nearly all road sections (21,044) had a length of 1 
kilometre. Table 2 contains summary statistics for 
all variables. 

 
4. RESULTS 

Table 6 gives the estimates of regression 
coefficients β and their standard errors based on 
the Poisson-lognormal (PLN) model. In addition 

table 6 contains values of the goodness-of-fit 
measures. It is easily seen that the parameters 
differ significantly between g1 and the other 
functions. The difference is attributable to the 
inclusion of the logarithm of AADT as an 
explanatory variable. When the natural logarithm 
of AADT is used model fit improves significantly 
(from MAPE=93%  to MAPE=74% when 
comparing models g1 and g2. 

 
 
 

Table 5. Data used in present study 
Variable name Symbol Mean Standard 

deviation Minimum Maximum 

Dependent variable 

     Total number of accidents 
Independent variables 
     Average annual daily traffic (AADT) 
     The natural logarithm of AADT  
     Number of lanes 
     Number of junctions  per kilometre 
     The natural logarithm of  (number of junction  + 1) 
     Dummy for trunk road (1 = yes, 0 = no) 
     County (identified by number from 1 to 20) 
     Motorway type B (1 = yes, 0 = no) 
     Motorway type A (1 = yes, 0 = no) 
     Rural road with speed limit 90 km/h  (1 = yes, 0 = no) 
     Speed limit (km/h) 
     Speed limit squared (km2/h2) 
     Segment length multiplied by years of data (km per year) (SLTM) 
     The natural logarithm of (number of lanes + 1) 

 
 
 

AADT 
 

X1 
X2 

 
X3 
X4 
X5 
X6 
X7 
X8 

 
X9 

 
1.3090 

 
2347.3 

6.981 
2.016 
0.200 
0.387 
0.269 

12.016 
0.010 
0.001 
0.039 

75.454 
5795.443 

7.599 
0.697 

 
3.4446 

 
4891.220 

1.164 
0.232 
0.425 
1.052 

 
5.878 

 
 
 

10.107 
0.086 
0.991 
0.086 

 
0 

 
8 

2.08 
1 
0 
0 
0 
1 
0 
0 
0 

30 
900 
2.08 

0 

 
96 

 
86307 
11.37 

8 
28 

3.37 
1 

20 
1 
1 
1 

100 
10000 

8 
2.08 

Source: personal study. 
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 Goodness-of-fit measures based on log-
likelihood values (AIC and BIC) show that g3 is 
the best functional form. However, goodness-of-fit 
measures based on residuals (MAD, MSPE, 
MAPE) show that g6 gives the best fit. It is 
important to point out that all functional forms 
from g2 to g6 have very similar goodness-of-fit 
values. The only function that differs markedly 
from the others is g1. This indicates that in accident 
modelling the natural logarithm of AADT should 
be used to represent traffic volume. Other changes 
in the set of independent variables do not produce 
large differences in modelling results. The 
difference between g3 and g2 concerns how the 
number of junctions was included in the model (in 
natural units in g2 and by means of the natural 

logarithm in g3. This change does not change 
model fit importantly (AIC, BIC and are a little 
smaller for g3 but MAD MSPE and MAPE are 
bigger). Adding speed limit squared variable (g4) 
to the set of variables changes goodness-of-fit 
measures by less than 0.5 %. A similar conclusion 
applies to the comparison between g2 and g5 with 
respect to the natural logarithm of the number of 
lanes. 

To decide which functional form (g3  or g6) fits 
best, CURE plots with box-whiskers extension for 
the variables with a limited range of values (figures 
1 - 4) and a traditional CURE plot for AADT 
(figure 5) were used.  

Fig. 1. Cure plot comparing functional forms 3 and 6 with respect to speed limit 
Source: personal study 

 

Fig. 2. Cure plot comparing functional forms 3 and 6 with respect to number of lanes 
Source: personal study. 
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Fig. 4. Cure plot comparing functional forms 3 and 6 with respect to county 
Source: personal study. 

 
   

 

Fig. 3. Cure plot comparing functional forms 3 and 6 with respect to number of junctions per kilometre 
Source: personal study. 

 

Fig. 5. Cure plot comparing functional forms 3 and 6 with respect to AADT 
Source: personal study. 
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 The plots in figures 1 to 5 can be used to 
decide which functional form g3 or g6 is better. 
Irrespective of the values of number of lanes, 
number of junctions and AADT, g6 fits the data 
better than g3 does. Figure 1 shows that the curve 
for g3 oscillates closer to the zero line than for g6, 
but only for speed limit lower than 60 km per hour. 

Box and whiskers plot indicate that cumulative 
residuals for g6 are less differentiated (smaller 
boxes and shorter whiskers) than for functional 
form g3 for each speed limit between 50 and 90 km 
per hour. Figure 3 shows that the curve for g3 is 
crossing the zero line around value 1. That means 
that there is a significant change of residual values. 
Although both curves oscillate in similar distance 
from the zero line for number of junctions between 
0 and 2, function g6 generates smaller changes of 
values and therefore fits the data more closely. As 
far as counties are concerned, the two functions do 
not differ greatly, see Figure 4. With respect to 
traffic volume (AADT), functional form g6 
generally fits the data better than functional form 
g3. Based on the CURE plots, it is therefore 
concluded that functional form 6 is the best model 
for predicting the number of accidents on national 
roads in Norway. 

In order to compare the exactness of accidents 
numbers predictions, the analysis of the residuals 
for the biggest group of segments – with the zero 
number of accidents – constituting 55% of all 
sections. The functional form  g1 definitely showed 
the worst fit within the range of zero values.  

Using each of the remaining functional forms 
(g2 – g6) allows us to reach the prediction errors 
that don’t exceed one (accident) in 70% of cases 
(see table 7.). The biggest difference between the 
real and predicted value is accordingly: for g1 – 
149 and 78 for the others. The biggest differences 

were observed for the segments within county Oslo 
area, which includes the city that is biggest 
agglomeration in Norway. The fit for the areas of 
the biggest density of population is the worst. The 
number of residuals in each range is very similar 
for functional forms g2 – g6, therefore it is difficult 
to pick out the best variant on this basis.  

For the detailed analysis of the quantitative 
influence of particular factors (variables) on the 
accidents number the elasticities were appointed 
(see table 8.). For the model used (logarithmic) 
elasticities are equivalent to the value of the 
coefficient estimates. Elasticities Ek for dummy 
variables Xk were appointed according to the 
following dependence (Halvorsen and Palmquist 
1980). 

                   1)exp( −= kkE β                  (15) 

As the model g1 was definitely less adequate, it 
was omitted in further considerations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7. Residua for zero accidents sectors 

Residua 
Functional form  

g1  
Functional 

form g2 
Functional 

form g3 
Functional 

form g4 
Functional 

form g5 
Functional 

form g6 

>100 
<100, 50) 
<50,30) 
<30,10) 
<10,8) 
<8,6) 
<6,4) 
<4,2) 
<2,1) 
<1,0> 

2 
15 
16 

143 
91 

149 
380 
1445 
2616 
9263 

0 
5 
11 
87 
59 
134 
388 

1269 
2310 
9846 

0 
5 
12 
86 
58 
136 
393 

1257 
2313 
9839 

0 
5 
12 
89 
54 
145 
370 

1256 
2319 
9859 

0 
5 
12 
87 
57 
133 
392 

1267 
2306 
9850 

0 
5 
12 
91 
54 
135 
380 

1251 
2327 
9854 

Source: personal study. 
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On the basis of the values of elasticity 
coefficients shown in table 8 it should be assumed 
that the models presented match each other. Apart 
from the number of lanes the signs and values of 
elasticities are similar. In case of country number 
for g6 the coefficient has opposite sign that in all 
the other cases. It is the result of introducing into 
the model the g6 variable that is county number 
square for which the coefficient is positive. As 
both variables describe the same feature, their 
elasticities should be joined. Because of the power 
relations between variables the coefficients cannot 
be added. Nevertheless it can be stated that their 
compound will result in positive value for the 
values of the variable being less than 33, that is for 
all the counties in consideration (there are 20 of 
them).  

Similarly in case of speed limit and speed limit 
squared: in case of g4 and g6the values are joined 
and the actual influence of this variable on the 
number of accidents is similar as in the other cases. 
Generally on the basis of the conducted analysis it 
can be stated that as the traffic flow, number of 
junctions, county number, segment length and time 
of measure increases the number of accidents 
within the segment also rises.  

Traffic flow has the biggest impact. The 
increase of traffic flow by 10% causes estimated 
raise in the number of accidents by circa 9%. 
Negative values of the elasticities for variable 
AADT/1000 should be treated as additive 
correction for multiplicative variable. The 
influence of the number of junctions on the number 

of accidents differs even by 30% between the 
particular models.  

Model g6 ascribes the greatest importance to the 
number of junctions. According to the models the 
bigger the speed limit is the smaller the number of 
accidents in the given segment. This correlation is 
also supported by negative coefficients for dummy 
of road type variable. This phenomenon is also 
consistent with intuition, as within the areas of the 
biggest traffic flow in the built-up areas where the 
speed limits are lower (40 or 50 km/h) the number 
of accidents is the biggest.  

Milton and Mannering (1998) also got negative 
values of speed limit coefficient (-0,0072 and –
0,0064). The bigger the number of junctions within 
a segment the bigger – according to the models – 
the number of accidents. Increasing the number of 
junctions by 10% causes estimated rise in the 
number of accidents by values from 0,38% (for g4) 
to 0,46% (for g6). Similar results were obtained by 
El-Besyouny and Sayed (2009) who got coefficient 
equalling 0,96 for PLN model.  

The authors did not take into consideration the 
influence of speed limit which is relevantly 
correlated with the number of junctions. As a result 
the number of junctions in El-Besyouny and Sayed 
corresponds with two variables in the present 
models which allows as to draw the conclusion on 
the matching of the results. 

 
 
 
 
 

Table 8. Elasticity estimates 

Variable name Functional 
form g2 

Functional 
form g3 

Functional 
form g4 

Functional 
form g5 

Functional 
form g6 

County 
County squared 
Speed limit 
Speed limit squared 
Number of junctions 
Dummy for trunk road 
Motorway type B  
Motorway type A 
Rural road  with speed limit 90 km/h 
SLTM (length ∙ years) 
AADT/1000 
Natural logarithm of AADT  
Number of lanes 
Natural logarithm of (num. of lanes  + 1) 
Natural logarithm of (num. of junctions  + 1) 

0.0008 
- 

-0.0268 
- 

0.0397 
-0.1154 
-0.1031 
-0.4449 
-0.2189 
0.1819 
-0.0015 
0.9228 
0.0100 

- 
- 

0.0015 
- 

-0.0272 
- 
- 

-0.1127 
-0.0944 
-0.4432 
-0.2162 
0.1845 
-0.0019 
0.9252 
0.0143 

- 
0.1096 

0.0010 
- 

-0.0761 
0.0004 
0.0381 
-0.1179 
-0.2313 
-0.5135 
-0.3235 
0.1831 
-0.0011 
0.9239 
-0.0045 

- 
- 

0.0006 
- 

-0.0268 
- 

0.0399 
-0.1136 
-0.1050 
-0.4513 
-0.2302 
0.1815 
-0.0005 
0.9175 
-0.1109 
0.3580 

- 

-0.0256 
0.1490 
-0.0762 
0.0004 
0.0460 
-0.1152 
-0.2326 
-0.5258 
-0.3184 
0.1843 
-0.0009 
0.9219 
-0.0360 

- 
- 

Source: personal study. 
 

 
 



TRANSPORT Choice of Functional Form for Independent Variables … 

 61 

5. CONCLUSIONS 

The following points summarise the main 
findings of the research reported in this paper: 

1. Poisson log-normal model is the most 
adequate (in comparison with the negative 
binomial and Poisson models) for modelling 
the number of accidents on the basis of the 
Norwegian data analysed in this paper. 

2. There are substantial differences between 
modelling results for the first functional 
form and all the others, which shows that in 
a list of independent variables both AADT 
and its natural logarithm (lnAADT) should 
be present. 

3. The choice of functional form is very 
important in accident prediction models. 
One should always check a few functional 
forms and choose the most appropriate 
functional form based on goodness-of-fit 
measures, CURE plots and other methods. 

4. Making a decision solely on the basis of 
goodness-of-fit measures based on log-
likelihood values (AIC, BIC) should be 
avoided as it can lead to wrong conclusions. 

5. Functional form number 6 was found to be 
the best to model to predict the number of 
injury accidents on national roads in 
Norway. 
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