
Logistics and Transport N
o
 2(11)/2010 An Analysis of Stochastic Inventory Control … 

 117 

1. BASIC NOTATIONS 

 D(t) – quantity demanded for finished prod-

ucts at time t . 

 Z(t) – quantity of returns at time t . 
 T – planning horizon scope. 

 Ipoz(t) – on-hand inventory state in the fi-

nished products warehouse at time t . 

 Iz(t) – inventory current state in the returns 

warehouse at time t . 

 Inp(t) – inventory current state in the finished 

products warehouse at time t . 

 Qzam – optimal order batch quantity. 

 Qzam(t) – order batch quantity being under-

way at time t . 

 TQzam(t) – cumulative order quantity at time 

t . 

 Qprod – optimal production batch quantity. 

 Qprod(t) – production batch quantity being 

underway at time t . 

 TQprod(t) – cumulative production quantity 

at time t . 

 Qodz – optimal recovery batch quantity. 

 Qodz(t) – recovery batch quantity being un-

derway at time t . 

 TQodz(t) – cumulative recovery quantity at 

time t . 

 Qu – optimal disposal batch quantity. 

 Qu(t) – disposal batch quantity being under-

way  at time t . 

 TQu(t) – cumulative disposal quantity at 

time t . 

 Qt – transportation batch quantity. 

 Qt(t) – transportation batch quantity at time 

t . 

 B(t) – number of products with a pending 

order status at time t  . 

 LS(t) – lost sales quantity at time t . 

 zamL  – order batch lead time. 

 odzL  – recovery batch lead time. 

 prodL  – production batch lead time. 

 zamK  – cost of launching the purchasing 

process. 

 odzK  – cost of launching the recovery 

process. 

 skzk  – unit cost of returns storage. 

 sknpk  – unit cost of new items storage. 

 Bk  – unit pending order cost. 

 bk  – unit lack-of-inventory cost. 

 rk  – unit recovery process cost. 

 uk  – unit disposal process cost. 

 zamk  – unit ordering process cost. 

 tk  – unit transportation cost. 
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In reverse logistics systems demand can be partially satisfied with new items manufacture or procurement and re-

turned products value recovery. The products are brought back to the places where they are stored in most models 

presented in literature on reverse logistics. Value recovery processes are carried out in due time in order to meet the 

existing demand. Some part of returns can be disposed of.  

Inventory management has significant meaning in reverse logistics. This article's purpose is to present models being 

modifications of a classical inventory control model in a continuous review system.  The first model of that kind was 

developed by Heyman in 1977. Guided by similar assumptions, Muckstadt, Korugan, Fleischmann and van der 

Laan, among others, designed continuous review models as well. 
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2. INTRODUCTION  

Reverse logistics understood as the process of 

managing reverse flow of materials, in-process 

inventory, finished goods and related information 

has become one of the logicians' key areas of 

interest. It enjoys ever-increasing interest of many 

industrial branches. Nowadays a growing number 

of companies realize the meaning of that field of 

logistics.  

Inventory management is paid a great deal of 

attention to in works on the issue. A lot of 

mathematical models referring to that field have 

been designed so far.[2,7]  

This article's purpose is to present models being 

modifications of a classical inventory control model 

in a continuous review system. The article focuses 

on the models presented in literature by particular 

authors. 

 

3. AN ANALYSIS OF THE MODELS  

Heyman in his work [3] analyzes a system where 

demand D(t) for new products can be satisfied with 

returns recovery or new products purchase. 

Demand for new items and the number of returns 

Z(t) are independent random variables described by 

the Poisson distribution with parameters D and z. 

There is one warehouse in which the returns are 

stocked in Heyman’s system. Purchasing and 

recovery lead time is not taken into account. New 

items are not stored. If the number of products 

available in the warehouse is not sufficient to meet 

the current demand then the purchasing process is 

launched. The purchase batch quantity and the 

recovery batch quantity are not determined. The 

author doesn't take into consideration the cost of 

launching the recovery process and fulfilling the 

external orders. He allows that returns rejection is 

possible. Returns are being disposed of if on 

launching the recovery process the state of on-hand 

inventory Ipoz(t) equals value su. On-hand inventory 

is the currently available inventory increased by the 

orders placed and decreased by the pending orders. 

In Heyman's model: 

Ipoz(t) = Iz(t), 

where: 

Iz(t) – returns inventory available at time t . 

The author takes into account the unit returns 

disposal cost ku. He assumes, however, that there is 

always dependence: 

Kzam – kr – ku >0, 

where: 

rk  – unit recovery process cost, 

zamk  – unit ordering process cost. 

Heyman takes into account a discount factor  

in his model. The joint cost function at time t will 

be as the following: 

 

 where: 

TQzam(t) – the total number of products 

purchased from the outside at time t, 

TQodz (t) – the total number of products made 

subject to recovery processes at time t, 

TQu(t) – the total number of products made 

subject to disposal processes at time t, 

The author minimizes the expected value of the 

system performance total cost. Heyman solves the 

problem using the theory of mass service. He notes 

that SN(t) = su – Iz(t) corresponds to queuing system 

realization M/M/1/su with one service position and 

limited queue size equal to su. Requests received by 

the queuing system correspond to demand satisfied 

with recovery of products stocked in the returns 

warehouse. Accepting every request makes one bear 

the recovery cost kr. Queuing system requests are 

rejected at intervals at which SN(t) = su. It's like a 

situation when the returns warehouse is empty and 

demand is met through new items purchase. In a 

queuing system Iz(t) corresponds to the number of 

spare places at time t. Queuing system idle periods 

when SN(t) = 0 correspond to a situation in which 

the returns warehouse is replenished, there is no 

demand and all the incoming returns are disposed 

of.  In order to specify the number of returns that 

are to be disposed of the author assumes that there 

is no system idle time, yet marginal tasks are being 

performed. The system functions as a queue with 

unlimited number of places until the next demand 

occurrence. Traffic intensity in Heyman's system is 

described in the following way: 
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The model worked out by Heymana was further 

developed by John A. Muckstadt and Michael H. 

Isaac. The authors analyze one- and two-echelon 

systems.  

In one-echelon system, like in Heyman's system, 

demand for finished products and returned products 

are independent random variables described by the 

Poisson distribution with parameters D and Z. 

The authors assume that D > Z. That's why it's 

necessary to purchase new items. Unlike Heyman, 

the authors take into account the purchasing lead 

time. The items are supplied in Lzam time units. All 

the returned products need to be recovered. 

Recovery is performed according to the FIFO 

queuing system. Recovery lead time is an 

independent random variable. Recovery process 

products are brought to the finished products 

warehouse. The authors consider one warehouse for 

recovery process products and the products 

supplied within the purchase order framework. The 

authors allow that the lack of inventory is possible. 

Orders that were not fulfilled gain a pending status. 

On-hand inventory at time t  is defined as follows: 

Ipoz(t) = Inett(t)+Iz(t)+Qzam(t), 

where: 

Inett(t) – net inventory quantity at time t, 

Iz(t) – number of products found in the queuing 

system at time t, i.e. waiting for recovery, 

Qzam(t) – order batch quantity being underway at 

time t. 

Inett(t)+Inp(t) - B(t) 

where: 

Inp(t) – inventory available in the finished 

products warehouse at time t, 

B(t) – number of products that have a pending 

order status at time t. 

The authors notice that as the time intervals 

between subsequent demand occurrences and 

returns introduction are described by the 

exponential distribution then it's possible to 

formulate a Markov chain for on-hand inventory. 

As the lead time is invariable and all the orders 

placed at time t – Lzam  are available at time t, the 

net inventory quantity can be described in the 

following way: 

, 

where: 

Qodz(t – Lzam,t) – number of products leaving the 

recovery center at time interval (t – Lzam,t], 

D(t – Lzam,t) – quantity demanded at time interval (t 

– Lzam,t]. 

The authors approximate the net inventory 

quantity by normal distribution. They assume that 

new items are ordered straight away at number 

Qzam 1 when on-hand inventory state in the finished 

products warehouse falls below value  sp+1. The 

purpose of their analysis is to determine optimal 

values sp and  Qzam on the assumption that the 

recovery system is permanently at work.  

The minimized objective function in a cost 

model is the following: 

 

Bk  – unit pending order cost, 

 and 
2
 are the mean and the variance of the 

normal distribution which describes the net 

inventory quantity. Whereas (·) and (·) are the 

probability density function and the distribution 
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function of a standard normal distribution 

respectively. 

A central warehouse in which recovery 

processes are being carried out is at the upper 

echelon in a two-echelon system. New items 

purchased from the outside suppliers are delivered 

to that warehouse as well. The lower echelon 

consists of S retailers who have only warehouses. 

Demand D
j
(t) and returns Z

j
(t) directed to particular 

retailers are described by the Poisson distribution 

with parameters 
j
D and 

j
Z where j=1,2,…,S. The 

returns are immediately passed on to the central 

warehouse where they undergo recovery processes 

according to the FIFO queuing system. Returns to 

the central warehouse Z(t) are described by the 

Poisson distribution with the following parameter: 

 

Recovery process products don't need to be 

brought to the same retailer who passed them on to 

the central warehouse. The authors assume that the 

goods can't be passed on between particular 

retailers. Lead time Lc from the central warehouse 

to the warehouse at the lower echelon is invariable 

and it's the same for all the retailers.  

The authors also assume that every j -th retailer 

applies a continuous order policy (s
j
p – 1, s

j
p).  

A retailer orders one item from the central 

warehouse at a time as soon as there is demand for 

it. Owing to that the demand in the central 

warehouse D(t) is described by the Poisson 

distribution with the following parameter: 

 

The authors assume different storage costs for 

goods in the central warehouse ksknp and in the j-th 

retailer's warehouse k
j
sknp and different pending 

order costs  k
j
B for individual retailers. The purpose 

of their analysis is to determine optimal values 

Qzam, sp and s
j
p. Muckstadt and Isaac formulate the 

following optimization problem: 

 

where: 

Qzam  1, sp  1, and s
j
p = 0,1,…,  

In their analysis the authors present an algorithm 

that can solve the existing problem. The algorithm 

compares the storage cost in the central warehouse 

with the storage cost and pending order cost at 

individual retailers'.[5]  

The presented above multi-echelon model 

developed by John A. Muckstadt and Michael H. 

Isaac doesn’t allow for disposal. Aybek Korugan 

and Surendra M. Gupta are the authors who 

eliminate that constraint. Demand and returns are 

still described by the Poisson distribution. The 

authors assume in their calculations that there is 

one retailer who the returns are handed over to 

according to parameter 
j
Z=  

j
Z. Korugan and 

Gupta create a queuing system model in which the 

returns are collected and stored in the retailer’s 

warehouse. At definite intervals of time the 

products are transported to the returns warehouse 

located near the workshop in which the recovery 

processes are carried out. Transportation time is the 

service time for the first queue position and it is 

described by the exponential distribution with a 

parameter t. The recovery process efficiency is 

described by the exponential distribution with a 

parameter odz. Recovery process products are 

stored in the finished products warehouse to which 

the demand D(t) is directed to. The authors assume 

that D > Z. The difference between these 

parameters Qprod = D - Z describes the production 

process outcome. The sizes of the system 

warehouses are limited. They are respectively LM1, 

LM2 and LM3 for succeeding warehouses. The 

authors don’t take into consideration the pending 

orders. If the finished products warehouse is empty 

when there is demand for a product  then the order 

is lost. The disposal process is launched when the 

retailer’s returns warehouse is replenished. Korugan 

and Gupta create the following cost model: 

, 

where: 

k
s
skz – cost of storage in the retailer’s returns 

warehouse, 
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w

skzk  – cost of storage in the workshop’s returns 

warehouse, 

sknpk  – cost of storage in the finished products 

warehouse,  

bk  – lost sales cost, 

tk  – transportation cost, 

I
s
z(t) – inventory quantity in the retailer’s returns 

warehouse at time t, 

I
w

z(t) – inventory quantity in the workshop’s 

returns warehouse at time t, 

Qu(t) – disposal batch quantity being underway 

at time t  

LS(t) – lost sales quantity at time t, 

Qt(t) – transportation batch quantity at time t, 

Qodz(t) – recovery batch quantity being 

underway at time t 

Qprod(t) – production batch quantity being 

underway at time t 

Korugan and Gupta analyze the presented above 

model using the expansion method. They check the 

impact of separate parameters on the cost quantity. 

They do that on the assumption that kt+kr<kp+ku.[4] 

John A. Muckstadt and Michael H. Isaac's work 

is further developed by a group of authors among 

whom there are Ervin van der Laan, Rommert 

Dekker, Marc Salomon and Ad Ridder. The authors 

analyze a single-echelon system. Demand and 

returns are random quantities described by the 

Poisson distribution with corresponding parameters, 

like in the predecessors’ analysis. The authors 

develop two approximation procedures and 

compare them with that of Muckstadt and Isaac. 

Van der Laan, Dekker, Salomon and  Ridder 

presume in the first approximation that net 

inventory has the normal distribution when the 

products are supplied from the outside. As for the 

second approximation, it describes the difference 

between the demand and the recovery process 

outcome with the help of the Theory of Brownian 

motion.  

The authors note that the increase of the returns 

number doesn’t lead to average costs decrease. It’s 

due to the growing holding cost of the returned 

products. That’s why they suggest that some part of 

returns should be disposed of. The returns are 

disposed of at the workshop level at which the 

recovery processes are carried out. But the products 

located in the finished products warehouse are not 

disposed of. The decision about the returned 

product disposal is made up on the basis of the 

information about the number of products waiting 

for recovery. The authors assume that the workshop 

consists of Cq parallel positions with service time 

described by the exponential distribution. There is a 

reception room in the workshop. If there are sq 

products in the reception room then every 

succeeding product is disposed of. [10] 

In their subsequent research van der Laan and 

Salomon analyze the previously developed 

inventory management strategies in reverse 

logistics. They compare their own strategy with 

those of Heyman, Muckstadt and Isaac. They work 

out a policy based on four parameters , , ,p zam u qs Q s s  

in order to achieve that. The disposal in their 

strategy is carried out in two cases: when on-hand 

inventory level reaches value us  and when the 

number of products waiting for recovery in the 

workshop equals qs . The policy (sp,Qzam,su,sq) and 

its versions (sp,Qzam,su) and (sp,Qzam,sq) are subject 

to numerical comparison. The authors prove that 

the strategy (sp,Qzam,su,sq) allows to achieve the 

lowest cost. Highly-complicated calculations used 

to find an optimal solution are the policy’s 

drawback. The authors claim that the mentioned 

above versions (sp,Qzam,su) may be of better 

practical use. They show that the first version 

allowed them to achieve  lower costs in most 

comparisons that had been made. [9]  

Ervin van der Laan deals with the comparative 

analysis of pull and push systems in reverse 

logistics in his works as well. He presents, along 

with M. Salomon, a simplified version of a system 

used in practice by photocopier manufacturers.  

The system contains a returns warehouse and a 

finished products warehouse where new items and 

recovery process products are stored. The analyzed 

product consists of one module. All the returned 

products are recoverable. Some part of products 

placed in the returns warehouse is subject to 

disposal. Time intervals between subsequent 

demand occurrences and subsequent returns 

occurrences are described with the help of the Cox 

distribution. The authors assume that returns and 

demand are correlated which means there is some 

probability cp  that product returns will result in 

demand occurrence. The authors allow that the lack 
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of inventory is possible which makes pending orders 

appear. They assume that production and recovery 

lead time is invariable. 

In a push system the authors use policy  

(sp,Qprod,Qodz,su) in which the recovery process is 

launched when the inventory level in the returns 

warehouse reaches value Qodz. The process of prodQ  

items manufacture is launched when on-hand 

inventory level in the finished products warehouse 

falls to ps  items. The disposal is launched if on-

hand inventory level is higher than or equals 

us items. 

In a pull system the authors suggest policy 

(sp,Qprod,Sr,su) in which the recovery process is 

launched when the on-hand inventory level in the 

finished products warehouse is less than or equals sr 

and the number of products in the returns 

warehouse is  sufficient to increase the on-hand 

inventory level to value Sr items. Qprod items 

manufacture is launched when on-hand inventory 

level falls to sp items. The disposal is launched if 

inventory level in the returns warehouse reaches 

value su.  

Having made the comparative analysis of the 

presented systems, the authors state that the pull 

system is more cost-effective only on condition that 

the cost of holding inventory in the returns 

warehouse is significantly lower than that of 

holding it in the finished products warehouse.[8] 

Moritz Fleischmann, Reolof Kuik and Rommert 

Dekker are the following authors who develop 

inventory management theory in reverse logistics. 

They design a simple inventory management model 

(sp,Qzam) in reverse logistics. The authors go back in 

their research to John A. Muckstadt and Michael H. 

Isaac's model. They analyze a simplified case in 

which returned products are subject to immediate 

use and are stored in the same warehouse as new 

items. New items are obtained through a purchase. 

The lead time is invariable. Demand and  returns 

are independent and they are described by the 

Poisson distribution. The authors note that the 

number of returns could be modeled in the previous 

demand occurrence function. Nevertheless, they 

admit that estimating that kind of dependence in 

practice is extremely difficult. Non-fulfilled orders 

acquire the pending status. The authors take into 

consideration the cost of launching the purchase 

order, unit cost of products storage and of pending 

orders fulfillment. The purpose of the research is to 

determine an optimal policy that would minimize 

the average cost function during a specified period. 

Fleischmann, Kuik and Dekker's model is a simple 

development of a classical inventory management 

model.[1] 

In their succeeding work dealing with inventory 

management in reverse logistics Huiqing Ouyang 

and Xiangyang Zhu note that most previously 

developed models are based on the assumption that 

the number of returns doesn't exceed the demand. 

They claim that the existing models don't describe 

the final stage of the product life cycle when the 

number of returns can significantly exceed the 

demand for them. Huiqing Ouyang and Xiangyang 

Zhu introduce the inventory management policy 

(sp,Qzam,su) which allows that it's possible. One of  

Ervin van der Laan's works presents the same 

policy but it doesn't consider the returns storage 

cost. The model singles out two warehouses: a 

returns warehouse and a finished products 

warehouse. The finished products warehouse is 

replenished owing to returns value recovery or raw 

materials purchase and new items manufacture. The 

recovery has higher priority like in most preceding 

analyses. Demand and returns remain independent 

and they are described by the Poisson distribution. 

Product recovery is modeled according to the FIFO 

queuing system. Recovery time is described by the 

exponential distribution. On-hand inventory at time 

t is calculated in the same way as in John A. 

Muckstadt and Michael H. Isaac's model. Huiqing 

Ouyang and Xiangyang Zhu allow that pending 

orders may occur but only in a case when the 

finished products warehouse is to be replenished 

with manufacture. The authors also assume that not 

more than one purchase order can be open at a 

time.[6] 

 

4. SUMMARY  

The article deals with stochastic inventory 

management models in reverse logistics systems 

based on a continuous review. The analysis presents 

particular authors' contribution to the development 

of reverse logistics theory. Their successors 

eliminate individual constraints creating more and 

more complicated mathematical models.  

The presented models are based on the 

assumption that demand for finished products can 

be satisfied with returns recovery, new items 

production or procurement. All the presented 

models assume that demand and returns have 
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random character. In most analyses demand and 

returns are totally independent and described by the 

Poisson distribution with corresponding parameters. 

All the presented models deal with a single-item 

product. Some models focus on multi-echelon 

systems. Recovery process is modeled with the help 

of the mass service theory.  The time of launching 

recovery, manufacture or purchasing processes is 

dependent on the corresponding information levels. 

On-hand inventory quantity is monitored in 

warehouses.  
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An analysis of continuous review inventory 

control models in reverse logistics 

 

Abstract 

 “Reverse logistics encompasses the logistics 

activities all the way from used products no longer 

required by the user to products again usable in a 

market”.[2]  

 In reverse logistics systems demand can be 

satisfied with production or procurement and any kind 

of reuse option. The used products are brought back, 

stored and reused in due time to satisfy the demand. 

Same part of this flow can be also disposed of. 

Inventory management has a significant meaning in 

reverse logistics. 

 The goal of his paper is to investigate 

continuous review models in reverse logistics. First 

model in category was created by Heyman in 1977. 

Along the same line of research, new models were 

created by Muckstadt, Korugan, Fleischmann and van 

der Laan. 
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